435 resultados para Adénylate cyclase
Resumo:
Nitric oxide has been reported to modulate fever in the brain. However, the sites where NO exerts this modulation remain somewhat unclear. Locus coeruleus (LC) neurons express not only nitric oxide synthase (NOS) but also soluble guanylyl cyclase (sGC). In the present study, we evaluated in vivo and ex vivo the putative role of the LC NO-cGMP pathway in fever. To this end, deep body temperature was measured before and after pharmacological modulations of the pathway. Moreover, nitrite/nitrate (NOx) and cGMP levels in the LC were assessed. Conscious rats were microinjected within the LC with a non-selective NOS inhibitor (NG-monomethyl-l-arginine acetate), a NO donor (NOC12), a sGC inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) or a cGMP analogue (8-bromo-cGMP) and injected intraperitoneally with endotoxin. Inhibition of NOS or sGC before endotoxin injection significantly increased the latency to the onset of fever. During the course of fever, inhibition of NOS or sGC attenuated the febrile response, whereas microinjection of NOC12 or 8-bromo-cGMP increased the response. These findings indicate that the LC NO-cGMP pathway plays a propyretic role. Furthermore, we observed a significant increase in NOx and cGMP levels, indicating that the febrile response to endotoxin is accompanied by stimulation of the NO-cGMP pathway in the LC.
Resumo:
The weaver mouse represents the only genetic animal model of gradual nigrostriatal dopaminergic neurodegeneration which is proposed as a pathophysiological phenotype of Parkinson`s disease. The aim of the present study was to analyze the nitric oxide and dopaminergic systems in selected brain regions of homozygous weaver mice at different postnatal ages corresponding to specific stages of the dopamine loss. Structural deficits were evaluated by quantification of tyrosine hydroxylase and neuronal nitric oxide synthase-immunostaining in the cortex, striatum, accumbens nuclei, subthalamic nuclei, ventral tegmental area, and substantia nigra compacta of 10-day, 1- and 2-month-old wildtype and weaver mutant mice. The results confirmed the progressive loss of dopamine during the postnatal development in the adult weaver mainly affecting the substantia nigra pars compacta, striatum, and subthalamic nucleus and slightly affecting the accumbens nuclei and ventral tegmental area. A general decrease in neuronal nitric oxide synthase-immunostaining with age was revealed in both the weaver and wild-type mice, with the decrease being most pronounced in the weaver. In contrast, there was an increase in the substantia nigra pars compacta nitric oxide synthase-immunostaining and a decrease mainly in the subthalamic and accumbens nuclei of the 2-month-old weaver mutant. The decrease in the expression of nNOS may bear functional significance related to the process of aging. DA neurons from the substantia nigra directly modulate the activity of subthalamic nucleus neurons, and their loss may contribute to the abnormal activity of subthalamic nucleus neurons. Although the functional significance of these changes is not clear, it may represent plastic compensating adjustments resulting from the loss of dopamine innervation, highlighting a possible role of nitric oxide in this process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Sepsis induces production of inflammatory mediators such as nitric oxide (NO) and causes physiological alterations, including changes in body temperature (T(b)). We evaluated the involvement of the central NO cGMP pathway in thermoregulation during sepsis induced by cecal ligation and puncture (CLP), and analyzed its effect on survival rate. Male Wistar rats with a T(b) probe inserted in their abdomen were intracerebroventricularly injected with 1 mu L N(G)-nitro-L-arginine methyl ester (L-NAME, 250 mu g), a nonselective NO synthase (NOS) inhibitor; or aminoguanidine (250 mu g), an inducible NOS inhibitor; or 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 0.25 mu g), a guanylate cyclase inhibitor. Thirty minutes after injection, sepsis was induced by cecal ligation and puncture (CLP), or the rats were sham operated. The animals were divided into 2 groups for determination of T(b) for 24 h and assessment of survival during 3 days. The drop in T(b) seen in the CLP group was attenuated by pretreatment with the NOS inhibitors (p < 0.05) and blocked with ODQ. CLP rats pretreated with either of the inhibitors showed higher survival rates than vehicle injected groups (p < 0.05), and were even higher in the ODQ pretreated group. Our results showed that the effect of NOS inhibition on the hypothermic response to CLP is consistent with the role of nitrergic pathways in thermoregulation.
Resumo:
Drugs that facilitate dopaminergic neurotransmission induce cognitive and attentional deficits which include inability to filter sensory input measured by prepulse inhibition (PPI) Methylphenidate, an amphetamine analog is used in the treatment of attention deficit hyperactivity disorder Given that nitric oxide (NO) modulates dopamine effect our aim is to analyze the nitric oxide synthase (NOS) and soluble guanylate cyclase (sGC) inhibitors effect on PPI disruption induced by methylphenidate The inhibitors effects were compared to those produced by haloperidol and clozapine Male Swiss mice received a first I p. Injection (one hour before testing), of either saline, or N(G) nitro L-arginine (10, 40 or 90 mg/kg) or 7-Nitroindazole (3, 10, 30 or 60 mg/kg). or oxadiazolo-quinoxalin (5 or 10 mg/kg). or haloperidol (1 mg/kg), or clozapine (5 mg/kg) Thirty min later mice received the second injection of either saline or methylphenidate (20 or 30 mg/kg) or amphetamine (5 or 10 mg/kg). One group of mice received intracerebroventricular 7-Nitroindazole (50 or 100 nM) followed by systemic administration of saline or methylphenidate (30 mg/kg) The results revealed a methylphenidate dose-dependent disruption of PPI comparable to amphetamine. The effect was prevented by either nitric oxide synthase or guanilate cyclase inhibitors or clozapine or haloperidol In conclusion, methylphenidate induced a dose-dependent PPI disruption in Swiss mice modulated by dopamine and NO/sGC. The results corroborate the hypothesis of dopamine and NO interacting to modulate sensorimotor gating through central nervous system. It may be useful to understand methylphenidate and other psychostimulants effects (C) 2009 Elsevier B.V All rights reserved
Resumo:
There is evidence that nitric oxide plays a role in the neurotransmitter balance within the basal ganglia and in the pathology of Parkinson`s disease. In the present work we investigated in striatal 6-hydroxydopamine (6-OHDA) lesioned rats the effects of a nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NOARG), given systemically on both the dopaminergic (DA) neuronal loss and the neuronal NOS cell density. We analyzed the DA neuronal loss through tyrosine hydroxylase immunohistochemistry (TH). The nitrergic system was evaluated using an antibody against the neuronal NOS (nNOS) isoform. Treatment with the L-NOARG significantly reduced 6-OHDA-induced dopaminergic damage in the dorsal striatum, ventral substantia nigra and lateral globus pallidus, but had no effects in the dorsal substantia nigra and in the cingulate cortex. Furthermore, L-NOARG reduced 6-OHDA-induced striatal increase, and substantia nigra compacta decrease, in the density of neuronal nitric oxide synthase positive cells. These results suggest that nitric oxide synthase inhibition may decrease the toxic effects of 6-OHDA on dopaminergic terminals and on dopamine cell bodies in sub-regions of the SN and on neuronal nitric oxide synthase cell density in the rat brain. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
I Vasorelaxant properties of three nitric oxide (NO) donor drugs (glyceryl trinitrate, sodium nitroprusside and spermine NONOate) in mouse aorta (phenylephrine pre-contracted) were compared with those of endothelium-derived NO (generated with acetylcholine), NO free radical (NO; NO gas solution) and nitroxyl ion (NO-; from Angeli's salt). 2 The soluble guanylate cyclase inhibitor, ODQ (1H-(1,2,4-)oxadiazolo(4,3-a)-quinoxalin-1-one; 0.3, 1 and 10 muM), concentration-dependently inhibited responses to all agents. 10 muM ODQ abolished responses to acetylcholine and glyceryl trinitrate, almost abolished responses to sodium nitroprusside but produced parallel shifts (to a higher concentration range; no depression in maxima) in the concentration-response curves for NO gas solution, Angeli's salt and spermine NONOate. 3 The NO scavengers, carboxy-PTIO, (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-indazoline-1-oxyl-3-oxide; 100 muM) and hydroxocobalamin (100 muM), both inhibited responses to NO gas solution and to the three NO donor drugs, but not Angeli's salt. Hydroxocobalamin, but not carboxy-PTIO, also inhibited responses to acetylcholine. 4 The NO- inhibitor, L-cysteine (3 mm), inhibited responses to Angeli's salt, acetylcholine and the three NO donor drugs, but not NO gas solution. 5 The data suggest that, in mouse aorta, responses to all three NO donors involve (i) activation of soluble guanylate cyclase, but to differing degrees and (ii) generation of both NO and NO-. Glyceryl trinitrate and sodium nitroprusside, which generate NO following tissue bioactivation, have profiles resembling the profile of endothelium-derived NO more than that of exogenous NO. Spermine NONOate, which generates NO spontaneously outside the tissue, was the drug that most closely resembled (but was not identical to) exogenous NO.
Resumo:
RT-PCR followed by 5'- and 3'- rapid amplification of cDNA ends was used to clone and sequence ovine prolactin-releasing peptide (PrRP). The cDNA was characterised by short 5'- and 3'-untranslated regions and a GC-rich (71%) coding region. The nucleotide and deduced amino acid sequences for the coding region showed 95.6 and 94.9% identity with bovine PrRP but the amino acid sequence of PrRP31 was conserved between these species. Northern blot analysis and RT-PCR showed that, as in the rat, the peptide was more abundantly expressed in the brainstem than the hypothalamus. However, in the ovine hypothalamus, PrRP mRNA expression was more widespread than in the rat, with expression detected in both rostral and caudal parts of the mediobasal hypothalamus. The effects of synthetic ovine PrRP on prolactin secretion both in vitro and in vivo were also examined. In primary cultures of sheep pituitary cells, PrRP significantly (P
Resumo:
1 Inhibition of rat platelet aggregation by the nitric oxide (NO) donor MAHMA NONOate (Z-1-{N-methyl-N-[6-(N-methylammoniohexyl)amino]}diazen-l-ium-1,2-diolate) was investigated. The aims were to compare its anti-aggregatory effect with vasorelaxation, to determine the effects of the soluble guanylate cyclase inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-ajquinoxalin-1-one), and to investigate the possible role of activation of sarco-encloplasmic reticulum calcium-ATPase (SERCA), independent of soluble guanylate cyclase, using thapsigargin. 2 MAHMA NONOate concentration-dependently inhibited sub-maximal aggregation responses to collagen (2 - 10 mug ml(-1)) and adenosine diphosphate (ADP; 2 mum) in platelet rich plasma. It was (i) more effective at inhibiting aggregation induced by collagen than by ADP, and (ii) less potent at inhibiting platelet aggregation than relaxing rat pulmonary artery. 3 ODQ (10 mum) caused only a small shift (approximately half a log unit) in the concentration-response curve to MAHMA NONOate irrespective of the aggregating agent. 4 The NO-independent activator of soluble guanylate cyclase, YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzy] indazole; 1 - 100 mum), did not inhibit aggregation. The cGMP analogue, 8-pCPT-cGMP (8-(4-chlorophenylthio)guanosine 3'5' cyclic monophosphate; 0.1 - 1 mm), caused minimal inhibition. 5 On collagen-aggregated platelets responses to MAHMA NONOate (ODQ 10 PM present) were abolished by thapsigargin (200 nm). On ADP-aggregated platelets thapsigargin caused partial inhibition. 6 Results with S-nitrosoglutathione (GSNO) resembled those with MAHMA NONOate. Glyceryl trinitrate and sodium nitroprusside were poor inhibitors of aggregation. 7 Thus inhibition of rat platelet aggregation by MAHMA NONOate (like GSNO) is largely ODQ-resistant and, by implication, independent of soluble guanylate cyclase. A likely mechanism of inhibition is activation of SERCA.
Resumo:
Two forms of the activated beta(1)-adrenoceptor exist, one that is stabilized by (-)-noradrenaline and is sensitive to blockade by (-)-propranolol and another which is stabilized by partial agonists such as (-)-pindolol and (-)-CGP 12177 but is relatively insensitive to (-)-propranolol. We investigated the effects of stimulation of the propranolol-resistant PI-adrenoceptor in the human heart. Myocardium from non-failing and failing human hearts were set up to contract at 1 Hz. In right atrium from non-ailing hearts in the presence of 200 nM (-)-propranolol, (-)-CGP 12177 caused concentration-dependent increases in contractile force (-logEC(50)[M] 7.3+/-0.1, E-max 23+/-1% relative to maximal (-)-isoprenaline stimulation of beta(1)- and beta(2)-adrenoceptors, n=86 patients), shortening of the time to reach peak force (-logEC(50)[M] 7.4+/-0.1, E-max 37+/-5%, n=61 patients) and shortening of the time to reach 50% relaxation (t(50%), -logEC(50)[M] 7.3+/-0.1, E-max 33+/-2%, n=61 patients). The potency and maxima of the positive inotropic effects were independent of Ser49Gly- and Gly389Arg-beta(1)-adrenoceptor polymorphisms but were potentiated by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (-logEC(50)[M] 7.7+/-0.1, E-max 68+/-6%, n=6 patients, P
Resumo:
We have isolated a cDNA clone from the honeybee brain encoding a dopamine receptor, AmDop2, which is positively coupled to adenylyl cyclase. The transmembrane domains of this receptor are 88% identical to the orthologous Drosophila D2 dopamine receptor, DmDop2, though phylogenetic analysis and sequence homology both indicate that invertebrate and vertebrate D2 receptors are quite distinct. In situ hybridization to mRNA in whole-mount preparations of honeybee brains reveals gene expression in the mushroom bodies, a primary site of associative learning. Furthermore, two anatomically distinct cell types in the mushroom bodies exhibit differential regulation of AmDop2 expression. In all nonreproductive females (worker caste) and reproductive males (drones) the receptor gene is strongly and constitutively expressed in all mushroom body interneurons with small cell bodies. In contrast, the large cell-bodied interneurons exhibit dramatic plasticity of AmDop2 gene expression. In newly emerged worker bees (cell-cleaning specialists) and newly emerged drones, no AmDop2 transcript is observed in the large interneurons whereas this transcript is abundant in these cells in the oldest worker bees (resource foragers) and older drones. Differentiation of the mushroom body interneurons into two distinct classes (i.e., plastic or nonplastic with respect to AmDop2 gene expression) indicates that this receptor contributes to the differential regulation of distinct neural circuits. Moreover, the plasticity of expression observed in the large cells implicates this receptor in the behavioral maturation of the bee.
Resumo:
Os doentes com diabetes mellitus tipo 2 apresentam predisposição para a retenção de sódio e são frequentemente hipertensos. No entanto, os mecanismos implicados na dificuldade do rim diabético em mobilizar o sódio são, ainda, pouco compreendidos. Os peptídeos da família das guanilinas estão envolvidos na regulação do transporte de electrólitos e água nos epitélios intestinal e renal, através da activação do receptor guanilato ciclase-C (GC-C) e subsequente libertação intracelular de GMPc. O objectivo do presente estudo foi a avaliação da actividade do sistema dos peptídeos das guanilinas (SPG) e do seu papel na regulação do balanço de sódio num modelo animal de diabetes tipo 2. Ratinhos machos C57BL/6 foram submetidos a uma dieta com alto teor de gordura e rica em hidratos de carbono simples (ratinhos diabéticos) ou a uma dieta normal (ratinhos controlo). A expressão renal e intestinal da guanilina (GN), uroguanilina (UGN) e do receptor GC-C assim como os níveis de GMPc na urina e plasma foram avaliados nos ratinhos controlo e diabéticos, durante a ingestão de dietas normo (NS) e hiper-salina (HS). Nos ratinhos diabéticos, durante a dieta NS verificou-se um aumento significativo da pressão arterial que foi acompanhado de redução da expressão do ARNm da GN, UGN e do GC-C no intestino e de aumento da expressão de ARNm da UGN no rim. A dieta HS induziu um aumento da expressão do ARNm da UGN no jejuno dos ratinhos controlo mas não nos diabéticos. Os ratinhos diabéticos apresentaram níveis urinários de GMPc inferiores aos controlos, em condições de dieta NS. Em conclusão, os nossos resultados sugerem que na diabetes tipo 2 ocorre uma redução da actividade intestinal do SPG que é acompanhada por um aumento compensatório da actividade renal do SPG. A diminuição da actividade do SPG intestinal na diabetes tipo 2 deve-se não só a uma redução da expressão dos peptídeos GN e UGN, mas também a uma redução da expressão do seu receptor, GC-C. Estes resultados sugerem que o SPG pode contribuir para a sensibilidade ao sódio na diabetes.
Resumo:
xi RESUMO A acção da insulina no músculo esquelético depende de um reflexo parassimpático hepático que conduz à libertação de uma substância hepática sensibilizadora da insulina, designada por HISS, responsável por cerca de 55% do efeito hipoglicemiante da insulina. A acção da HISS é finamente regulada pelo monóxido de azoto (NO) hepático e pelo estado prandial, aumentando no período pós-prandial imediato e diminuindo progressivamente com as horas de jejum. A secreção da HISS pode ser inibida cirúrgica ou farmacologicamente, quer por desnervação selectiva do plexo anterior hepático, quer por administração de atropina, quer por inibição do sintase do NO (NOS) hepático. O objectivo geral do trabalho apresentado nesta dissertação foi a caracterização da via de transdução de sinal que conduz à libertação da HISS. O modelo utilizado neste estudo foi o rato Wistar. A sensibilidade à insulina foi avaliada através do teste rápido de sensibilidade à insulina (RIST). A primeira hipótese de trabalho testada foi que a sequência de eventos que conduzem à secreção da HISS inicia-se com a activação do sistema parassimpático hepático seguida de activação do NOS hepático com subsequente produção de NO e activação do guanilato ciclase (GC). Observou-se que a administração de um dador de NO reverteu a resistência à insulina induzida, quer por inibição do NOS hepático, quer por antagonismo dos receptores muscarínicos com atropina. Em contraste, a resistência à insulina produzida por inibição do NOS hepático não foi revertida por administração intraportal de acetilcolina (ACh). Constatou-se que a inibição do GC hepático diminuiu a sensibilidade à insulina. Estes resultados sugerem que: a ACh libertada no fígado induz a síntese de NO hepático que conduz à libertação da HISS, que por sua vez é modulada pelo GC hepático. A libertação da HISS em resposta à insulina é regulada pelo estado prandial. Uma vez que os níveis hepáticos de glutationo (GSH) se encontram, tal como a HISS, diminuídos no estado de jejum e aumentados após a ingestão de uma refeição, testou-se a hipótese de que o GSH hepático está envolvido na secreção da HISS. Observou-se que a depleção do GSH hepático induziu resistência à insulina, comparável à obtida após inibição do NOS hepático. Estes resultados suportam a hipótese de que o GSH hepático desempenha um papel crítico na acção periférica da insulina. Considerando que, no estado de jejum, tanto os níveis de GSH hepático como os níveis de NO hepático são baixos, testou-se a hipótese de que a co-administração intraportal de um dador de GSH e de um dador de NO promove um aumento da sensibilidade à insulina no estado de jejum, devido ao restabelecimento do mecanismo da HISS. Observou-se que a administração sequencial de dadores de GSH e de NO no fígado provocou um aumento na sensibilidade à insulina, dependente da dose de dador de GSH administrada. Concluiu-se portanto que ambos, GSH e NO, são essenciais para que o mecanismo da HISS esteja completamente funcional. O GSH e o NO reagem para formar um S-nitrosotiol, o S-nitrosoglutationo (GSNO). Os resultados supra-mencionados conduziram à formulação da hipótese de que a secreção/acção da HISS depende da formação de GSNO. Observou-se que a administração intravenosa de S-nitrosotióis (RSNOs) aumentou a sensibilidade à insulina, em animais submetidos a um período de jejum, ao contrário da administração intraportal destes fármacos, o que RSNOs têm uma acção periférica, mas não hepática, na sensibilidade à insulina. Os resultados obtidos conduziram à reformulação da hipótese da HISS, sugerindo que a ingestão de uma refeição activa os nervos parassimpáticos hepáticos levando à libertação de ACh no fígado que, por sua vez activa o NOS. Simultaneamente, ocorre um aumento dos níveis de GSH hepático que reage com o NO hepático para formar um composto nitrosado, o GSNO. Este composto mimetiza a acção hipoglicemiante da HISS no músculo esquelético. SUMMARY Insulin action at the skeletal muscle depends on a hepatic parasympathetic reflex that promotes the release of a hepatic insulin sensitizing substance (HISS) from the liver, which contributes 55% to total insulin action. HISS action is modulated by hepatic nitric oxide (NO) and also by the prandial status so as to, in the immediate ostprandial state, HISS action is maximal, decreasing with the duration of fasting. HISS secretion may be inhibited by interruption of the hepatic parasympathetic reflex, achieved either by surgical denervation of the liver or by cholinergic blockade with atropine, or by prevention of hepatic NO release, using NO synthase (NOS) antagonists. The main objective of this work was to characterize the signal transduction pathways that lead to HISS secretion by the liver. Wistar rats were used and insulin sensitivity was evaluated using the rapid insulin sensitivity test (RIST). The first hypothesis tested was that the sequence of events that lead to HISS secretion starts with an increase in the hepatic parasympathetic tone, followed by the activation of hepatic NOS and subsequent triggering of guanylate cyclase (GC). We observed that insulin resistance produced either by muscarinic receptor antagonism with atropine or by hepatic NOS inhibition was reversed by the intraportal administration of an NO donor. In contrast, intraportal acetylcholine (ACh) did not restore insulin sensitivity after NOS inhibition. We also observed that GC inhibition lead to a decrease in insulin sensitivity.These results suggest that the release of ACh in the liver activates hepatic NO synthesis in order to allow HISS secretion, through a signaling pathway modulated by GC. HISS release in response to insulin is controlled by the prandial status. The second hypothesis tested was that glutathione (GSH) is involved in HISS secretion since the hepatic levels of GSH are, like HISS action, decreased in the fasted state and increased after ingestion of a meal. We observed that hepatic GSH depletion led to insulin resistance of the same magnitude of that observed after inhibition of hepatic NOS. These results support the hypothesis that hepatic GSH is crucial in peripheral insulin action. Since, in the fasted state, both hepatic GSH and NO levels are low, we tested the hypothesis that intraportal o-administration of a GSH donor and an NO donor enhances insulin sensitivity in fasted Wistar rats, by restoring HISS secretion. We observed that GSH and NO increased insulin sensitivity in a GSH dose-dependent manner. We concluded that HISS secretion requires elevated levels of both GSH and NO in the liver. GSH and NO react to form a S-nitrosothiol, S-nitrosoglutathione (GSNO). The last hypothesis tested in this work was that HISS secretion/ action depends on the formation of GSNO. We observed that intravenous administration of -nitrosothiols (RSNOs) increased insulin sensitivity in animals fasted for 24 h, in contrast with the intraportal administration of the drug. This result suggests that RSNOs enhanced insulin sensitivity through a peripheral, and not hepatic, mechanism. The results obtained led to a restructuring of the HISS hypothesis, suggesting that the ingestion of a meal triggers the hepatic parasympathetic nerves, leading to the release of Ach in the liver, which in turn activates NOS. Simultaneously, hepatic GSH levels increase and react with NO to form a nitrosated compound, GSNO. S-nitrosoglutathione mimics HISS hypoglycaemic action at the skeletal muscle.
Resumo:
During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membrane-bound P2 purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and -smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca2+]i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y4 agonist, MRS4062, caused a fast desensitizing [Ca2+]i rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca2+ in the extracellular fluid. The biphasic [Ca2+]i response to UTP was attenuated respectively by P2Y4 blockers, like reactive blue-2 and suramin, and by the P2Y11 antagonist, NF340. UTP and the P2Y2 receptor agonist MRS2768 increased, whereas the selective P2Y11 agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y11receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y2, P2Y4 and P2Y11 receptors. Data indicate that besides P2Y4 and P2Y2 receptors which are responsible for UTP-induced [Ca2+]i transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y11 receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.
Resumo:
A Gß protein and the TupA Co-Regulator Bind to Protein Kinase A Tpk2 to Act as Antagonistic Molecular Switches of Fungal Morphological Changes
Resumo:
Tuberculosis presents a myriad of symptoms, progression routes and propagation patterns not yet fully understood. Whereas for a long time research has focused solely on the patient immunity and overall susceptibility, it is nowadays widely accepted that the genetic diversity of its causative agent, Mycobacterium tuberculosis, plays a key role in this dynamic. This study focuses on a particular family of genes, the mclxs (Mycobacterium cyclase/LuxR-like genes), which codify for a particular and nearly mycobacterial-exclusive combination of protein domains. mclxs genes were found to be pseudogenized by frameshift-causing insertion(s)/deletion(s) in a considerable number of M. tuberculosis complex strains and clinical isolates. To discern the functional implications of the pseudogenization, we have analysed the pattern of frameshift-causing mutations in a group of M. tuberculosis isolates while taking into account their microbial-, patient- and disease-related traits. Our logistic regression-based analyses have revealed disparate effects associated with the transcriptional inactivation of two mclx genes. In fact, mclx2 (Rv1358) pseudogenization appears to be primarily driven by the microbial phylogenetic background, being mainly related to the Euro-American (EAm) lineage; on the other hand, mclx3 (Rv2488c) presents a higher tendency for pseudogenization among isolates from patients born on the Western Pacific area, and from isolates causing extra-pulmonary infections. These results contribute to the overall knowledge on the biology of M. tuberculosis infection, whereas at the same time launch the necessary basis for the functional assessment of these so far overlooked genes.