998 resultados para Actin Depolymerizing Factors
Resumo:
Parkinson’s disease (PD) is a progressive, degenerative, neurological disease. The progressive disability associated with PD results in substantial burdens for those with the condition, their families and society in terms of increased health resource use, earnings loss of affected individuals and family caregivers, poorer quality of life, caregiver burden, disrupted family relationships, decreased social and leisure activities, and deteriorating emotional well-being. Currently, no cure is available and the efficacy of available treatments, such as medication and surgical interventions, decreases with longer duration of the disease. Whilst the cause of PD is unknown, genetic and environmental factors are believed to contribute to its aetiology. Descriptive and analytical epidemiological studies have been conducted in a number of countries in an effort to elucidate the cause, or causes, of PD. Rural residency, farming, well water consumption, pesticide exposure, metals and solvents have been implicated as potential risk factors for PD in some previous epidemiological studies. However, there is substantial disagreement between the results of existing studies. Therefore, the role of environmental exposures in the aetiology of PD remains unclear. The main component of this thesis consists of a case-control study that assessed the contribution of environmental exposures to the risk of developing PD. An existing, previously unanalysed, dataset from a local case-control study was analysed to inform the design of the new case-control study. The analysis results suggested that regular exposure to pesticides and head injury were important risk factors for PD. However, due to the substantial limitations of this existing study, further confirmation of these results was desirable with a more robustly designed epidemiological study. A new exposure measurement instrument (a structured interviewer-delivered questionnaire) was developed for the new case-control study to obtain data on demographic, lifestyle, environmental and medical factors. Prior to its use in the case-control study, the questionnaire was assessed for test-retest repeatability in a series of 32 PD cases and 29 healthy sex-, age- and residential suburb-matched electoral roll controls. High repeatability was demonstrated for lifestyle exposures, such as smoking and coffee/tea consumption (kappas 0.70-1.00). The majority of environmental exposures, including use of pesticides, solvents and exposure to metal dusts and fumes, also showed high repeatability (kappas >0.78). A consecutive series of 163 PD case participants was recruited from a neurology clinic in Brisbane. One hundred and fifty-one (151) control participants were randomly selected from the Australian Commonwealth Electoral Roll and individually matched to the PD cases on age (± 2 years), sex and current residential suburb. Participants ranged in age from 40-89 years (mean age 67 years). Exposure data were collected in face-to-face interviews. Odds ratios and 95% confidence intervals were calculated using conditional logistic regression for matched sets in SAS version 9.1. Consistent with previous studies, ever having been a regular smoker or coffee drinker was inversely associated with PD with dose-response relationships evident for packyears smoked and number of cups of coffee drunk per day. Passive smoking from ever having lived with a smoker or worked in a smoky workplace was also inversely related to PD. Ever having been a regular tea drinker was associated with decreased odds of PD. Hobby gardening was inversely associated with PD. However, use of fungicides in the home garden or occupationally was associated with increased odds of PD. Exposure to welding fumes, cleaning solvents, or thinners occupationally was associated with increased odds of PD. Ever having resided in a rural or remote area was inversely associated with PD. Ever having resided on a farm was only associated with moderately increased odds of PD. Whilst the current study’s results suggest that environmental exposures on their own are only modest contributors to overall PD risk, the possibility that interaction with genetic factors may additively or synergistically increase risk should be considered. The results of this research support the theory that PD has a multifactorial aetiology and that environmental exposures are some of a number of factors to contribute to PD risk. There was also evidence of interaction between some factors (eg smoking and welding) to moderate PD risk.
Resumo:
In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.
Resumo:
Messenger RNAs coding for growth factors and receptor tyrosine kinases were measured by quantitative competitive and by semi-quantitative reverse-transcription polymerase chain reaction in whole and dissected chick inner ears. The fibroblast growth factor (FGF) receptor 1 chick embryonic kinase (CEK) 1 was expressed in all structures examined (otocyst, hatchling whole cochlea, cochlear nerve ganglion, and cochlear and vestibular sensory epithelia), although slightly more heavily in the otocyst. The related fibroblast growth factor receptors CEK 2 and 3 were preferentially expressed in the nerve ganglion and in the vestibular sensory epithelium, respectively. FGF 1 mRNA was low in early development, increasing to mature levels at around embryonic age 11 days, while FGF2, mRNA was expressed at constant levels at all ages. In response to ototoxic damage, FGF1 mRNA levels were increased in the early damaged cochlear sensory epithelium. Immunohistochemistry for CEK1 showed that normal hair cells expressed the receptor heavily on the hair cell stereocilia, while with early damage, CEK1 came to be expressed heavily on the apical surfaces of the supporting cells. In normal chicks, the CEK4 and CEK8 eph-class receptor tyrosine kinases were expressed relatively heavily by the cochlear nerve ganglion, and CEK10 was expressed relatively heavily by the cochlear hair cell sensory epithelium. The results suggest that the FGF system may be involved in the response of the cochlear epithelium to ototoxic damage. The eph-class receptor tyrosine kinase CEK10 may be involved in cell interactions in the cochlear sensory epithelium, while CEK4 and CEK8 may play a role in the cochlear innervation.
Resumo:
Environmental effects on the concentration of photosynthetic pigments in micro-algae can be explained by dynamics of photosystem synthesis and deactivation. A model that couples photosystem losses to the relative cellular rates of energy harvesting (light absorption) and assimilation predicts optimal concentrations of light-harvesting pigments and balanced energy flow under environmental conditions that affect light availability and metabolic rates. Effects of light intensity, nutrient supply and temperature on growth rate and pigment levels were similar to general patterns observed across diverse micro-algal taxa. Results imply that dynamic behaviour associated with photophysical stress, and independent of gene regulation, might constitute one mechanism for photo-acclimation of photosynthesis.
Resumo:
Study Design, The study group consisted of 53 patients who underwent 75 operations for spine metastases. Patient and tumor demographic factors, preoperative nutritional status, and perioperative adjunctive therapy were retrospectively reviewed. Objective, To determine the risk factors for wound breakdown and infection in patients undergoing surgery for spinal metastases. Summary of Background Data. Spinal Fusion using spine implants may be associated with an infection rate of 5% or more. Surgery for spine metastases is associated with an infection rate of more than 10%. Factors other than the type of surgery performed may account for the greater infection rate. Methods. Data were obtained by reviewing patient records. Age, sex, and neurologic status of the patient; tumor type and site; and surgical details were noted. Adjunctive treatment with corticosteroids and radiotherapy was recorded, Nutritional status was evaluated by determining serum protein and serum albumin concentrations and by total lymphocyte count. Results. Wound breakdown and Infection occurred in 75 of 75 wounds. No patient or tumor demographic factors other than intraoperative blood loss (P < 0.1) were statistically associated with infection; The correlation between preoperative protein deficiency (P < 0.01) or perioperative corticosteroid administration (P < 0.10) and wound infection was significant. There was no statistical correlation between lymphocyte count or perioperative radiotherapy and wound infection. Conclusions, The results indicate that preoperative protein depletion and perioperative administration of corticosteroids are risk factors for wound infection in patients undergoing surgery for spine metastases, Perioperative correction of nutritional depletion and cessation of steroid therapy may reduce wound complications.
Resumo:
Numerous factors affect the distribution of mangrove plants. Most mangrove species are typically dispersed by water-buoyant propagules, allowing them to lake advantage of estuarine, coastal and ocean currents both to replenish existing stands and to establish new ones. The direction they travel depends on sea currents and land barriers, but the dispersal distance depends on the time that propagules remain buoyant and viable. This is expected to differ for each species. Similarly, each species will also differ in establishment success and growth development rate, and each has tolerance limits and growth responses which are apparently unique. Such attributes are presumably responsible for the characteristic distributional ranges of each species, as each responds to the environmental, physical and biotic settings they might occupy. In practice, species are often ordered by the interplay of different factors along environmental gradients, and these may conveniently be considered at four geographic scales-global, regional, estuarine and intertidal. We believe these influencing factors act similarly around the world, and to demonstrate this point, we present examples of distributional gradients from the two global biogeographic regions, the Atlantic East Pacific and the Indo-West Pacific.
Resumo:
The amount of injury to rice caused by white stem borer Sciryophaga innotata depends on cultivar, and stage of plant and insect development, as well as insect abundance. Of the cultivars tested, IR64, IR42, Cisadane and Ketan. IR64 were the most susceptible and Ketan the least susceptible to feeding damage. Third and fourth instars consumed more stem dry matter than other stages, although yield reduction depended on the number of tillers injured. On the wider stemmed Ketan, fewer tillers were injured than the narrower IR64. Larvae are more likely to move among tillers in the third instar stage, which tends to coincide with maximum tillering and may result in more tillers injured and in yield reduction. Later instar larvae burrow downwards to the internode where they pupate. Larvae appear to move less among tillers in 'resistant' cultivars. Management strategies should target this pest at third instar and when its abundance in the field warrants control. Fewer than 10% of the neonates establish successfully on stems, and this mortality needs to be taken into account when deciding on control, as does the ability of rice plants to compensate for injury. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Albicidins are important factors in systemic pathogenesis by Xanthomonas albilineans, which causes the devastating leaf scald disease of sugar cane. They ale also of substantial interest as antibiotics that selectively block prokaryote DNA replication. Albicidin biosynthesis is highly sensitive to medium composition. An optimized, chemically defined medium (SMG3) yielded 30-fold more albicidin from half the accumulated biomass, relative to sucrose peptone (SP) medium. Phosphate starvation stimulated albicidin production in SMG3 and SP media. Addition of other amino acids, ammonium ions or peptones to the defined medium increased the growth rate of X albilineans XA3, but differentially inhibited albicidin biosynthesis. Knowledge of these factors indicates new approaches to understanding mechanisms of pathogenesis and resistance to sugar cane leaf scald disease, and to strain improvement for production of albicidin antibiotics.
Resumo:
Open system pyrolysis (heating rate 10 degrees C/min) of coal maturity (vitrinite reflectance, VR) sequence (0.5%, 0.8% and 1.4% VR) demonstrates that there are two stages of thermogenic methane generation from Bowen Basin coals. The first and major stage shows a steady increase in methane generation maximising at 570 degrees C, corresponding to a VR of 2-2.5%. This is followed by a less intense methane generation which has not as yet maximised by 800 degrees C (equivalent to VR of 5%). Heavier (C2+) hydrocarbons are generated up to 570 degrees C after which only the C-1 (CH4, CO and CO2) gases are produced. The main phase of heavy hydrocarbon generation occurs between 420 and 510 degrees C. Over this temperature range,methane generation accounts for only a minor component, whereas the wet gases (C-2-C-5) are either in equal abundance or are more abundant by a factor of two than the liquid hydrocarbons. The yields of non-hydrocarbon gases CO2 and CO are greater then methane during the early stages of gas generation from an immature coal, subordinate to methane during the main phase of methane generation after which they are again dominant. Compositional data for desorbed and produced coal seam gases from the Bowen show that CO2 and wet gases are a minor component. This discrepancy between the proportion of wet gas components produced during open system pyrolysis and that observed in naturally matured coals may be the result of preferential migration of wet gas components, by dilution of methane generated during secondary cracking of bitumen, or kinetic effects associated with different activations for production of individual hydrocarbon gases. Extrapolation of results of artificial pyrolysis of the main organic components in coal to geological significant heating rates suggests that isotopically light methane to delta(13)C of -50 parts per thousand can be generated. Carbon isotope depletions in C-13 are further enhanced, however, as a result of trapping of gases over selected rank levels (instantaneous generation) which is a probable explanation for the range of delta(13)C values we have recorded in methane desorbed from Bowen Basin coals (-51 +/- 9 parts per thousand). Pervasive carbonate-rich veins in Bowen Basin coals are the product of magmatism-related hydrothermal activity. Furthermore, the pyrolysis results suggest an additional organic carbon source front CO2 released at any stage during the maturation history could mix in varying proportions with CO2 from the other sources. This interpretation is supported by C and O isotopic ratios, of carbonates that indicate mixing between magmatic and meteoric fluids. Also, the steep slope of the C and O isotope correlation trend suggests that the carbonates were deposited over a very narrow temperature interval basin-wide, or at relatively high temperatures (i.e., greater than 150 degrees C) where mineral-fluid oxygen isotope fractionations are small. These temperatures are high enough for catagenic production of methane and higher hydrocarbons from the coal and coal-derived bitumen. The results suggests that a combination of thermogenic generation of methane and thermodynamic processes associated with CH4/CO2 equilibria are the two most important factors that control the primary isotope and molecular composition of coal seam gases in the Bowen Basin. Biological process are regionally subordinate but may be locally significant. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The murine homologue of the TFEC was cloned as part of an analysis of the expression of the microphthalmia-TFE (MiT) subfamily of transcription factors in macrophages. TFEC, which most likely acts as a transcriptional repressor in heterodimers with other MiT family members, was identified in cells of the mononuclear phagocyte lineage, coexpressed,vith all other known MiT subfamily members (Mitf, TFE3, TFEB), Northern blot analysis of several different cell lineages indicated that the expression of murine TFEC (mTFEC) was restricted to macrophages. A 600-bp fragment of the TATA-less putative proximal promoter of TFEC shares features with many known macrophage-specific promoters and preferentially directs luciferase expression in the RAW264.7 macrophage cell line in transient transfection assays. Five of six putative Ets motifs identified in the TFEC promoter bind the macrophage-restricted transcription factor PU,I under in vitro conditions and in transfected 3T3 fibroblasts; the minimal luciferase activity of the TFEC promoter could be induced by coexpression of PU.1 or the related transcription factor Ets-2. The functional importance of the tissue-restricted expression of TFEC and a possible role in macrophage-specific gene regulation require further investigation, but are likely to be linked to the role of the other MiT family members in this lineage.
Resumo:
The Women's Health Australia project provided the opportunity to examine the prevalence of leaking urine and associated variables in three large cohorts of Australian women 18-23 years of age (young N = 14,761), 45-50 (mid-age N = 14,070), and 70-75 (older N = 12,893). The proportion of women reporting leaking urine was 12.8% (95% CI: 12.2-13.3), 36.1% (35.2-37.0), and 35% (34.1-35.9) in each of the three cohorts, respectively. Logistic regression analysis showed significant associations between leaking urine and parity in the young and mid-age women, and between leaking urine and constipation, other bowel symptoms, body mass index, and urine that burns or stings in all three groups. in the mid-age and older cohorts, women who reported having both hysterectomy and prolapse repair, or prolapse repair alone, were also more likely to report leaking urine. Lower scores on the physical and mental component summary scores of the medical outcomes survey short form (36 items) questionnaire suggest lower quality of life among women who report leaking urine, compared with those who do not. (C) 1999 Wiley-Liss,Inc.
Resumo:
SETTING: Hlabisa Tuberculosis Programme, Hlabisa, South Africa. OBJECTIVE: To determine trends in and risk factors for interruption of tuberculosis treatment. METHODS: Data were extracted from the control programme database starting in 1991. Temporal trends in treatment interruption are described; independent risk factors for treatment interruption were determined with a multiple logistic regression model, and Kaplan-Meier survival curves for treatment interruption were constructed for patients treated in 1994-1995. RESULTS: Overall 629 of 3610 surviving patients (17%) failed to complete treatment; this proportion increased from 11% (n = 79) in 1991/1992 to 22% (n = 201) in 1996. Independent risk factors for treatment interruption were diagnosis between 1994-1996 compared with 1991-1393 (odds ratio [OR] 1.9, 95% confidence interval [CT] 1.6-2.4); human immunodeficiency virus (HIV) positivity compared with HIV negativity (OR 1.8, 95% CI 1.4-2.4); supervised by village clinic compared with community health worker (OR 1.9, 95% CI 1.4-2.6); and male versus female sex (OR 1.3, 95% CI 1.1-1.6). Few patients interrupted treatment during the first 2 weeks, and the treatment interruption rate thereafter was constant at 1% per 14 days. CONCLUSIONS: Frequency of treatment interruption from this programme has increased recently. The strongest risk factor was year of diagnosis, perhaps reflecting the impact of an increased caseload on programme performance. Ensuring adherence to therapy in communities with a high level of migration remains a challenge even within community-based directly observed therapy programmes.
Resumo:
The development of large-scale solid-stale fermentation (SSF) processes is hampered by the lack of simple tools for the design of SSF bioreactors. The use of semifundamental mathematical models to design and operate SSF bioreactors can be complex. In this work, dimensionless design factors are used to predict the effects of scale and of operational variables on the performance of rotating drum bioreactors. The dimensionless design factor (DDF) is a ratio of the rate of heat generation to the rate of heat removal at the time of peak heat production. It can be used to predict maximum temperatures reached within the substrate bed for given operational variables. Alternatively, given the maximum temperature that can be tolerated during the fermentation, it can be used to explore the combinations of operating variables that prevent that temperature from being exceeded. Comparison of the predictions of the DDF approach with literature data for operation of rotating drums suggests that the DDF is a useful tool. The DDF approach was used to explore the consequences of three scale-up strategies on the required air flow rates and maximum temperatures achieved in the substrate bed as the bioreactor size was increased on the basis of geometric similarity. The first of these strategies was to maintain the superficial flow rate of the process air through the drum constant. The second was to maintain the ratio of volumes of air per volume of bioreactor constant. The third strategy was to adjust the air flow rate with increase in scale in such a manner as to maintain constant the maximum temperature attained in the substrate bed during the fermentation. (C) 2000 John Wiley & Sons, Inc.