974 resultados para Acoustic signal classification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a system for classification of industrial steel pieces by means of magnetic nondestructive device. The proposed classification system presents two main stages, online system stage and off-line system stage. In online stage, the system classifies inputs and saves misclassification information in order to perform posterior analyses. In the off-line optimization stage, the topology of a Probabilistic Neural Network is optimized by a Feature Selection algorithm combined with the Probabilistic Neural Network to increase the classification rate. The proposed Feature Selection algorithm searches for the signal spectrogram by combining three basic elements: a Sequential Forward Selection algorithm, a Feature Cluster Grow algorithm with classification rate gradient analysis and a Sequential Backward Selection. Also, a trash-data recycling algorithm is proposed to obtain the optimal feedback samples selected from the misclassified ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical modelling and statistical learning theory are two powerful analytical frameworks for analyzing signals and developing efficient processing and classification algorithms. In this thesis, these frameworks are applied for modelling and processing biomedical signals in two different contexts: ultrasound medical imaging systems and primate neural activity analysis and modelling. In the context of ultrasound medical imaging, two main applications are explored: deconvolution of signals measured from a ultrasonic transducer and automatic image segmentation and classification of prostate ultrasound scans. In the former application a stochastic model of the radio frequency signal measured from a ultrasonic transducer is derived. This model is then employed for developing in a statistical framework a regularized deconvolution procedure, for enhancing signal resolution. In the latter application, different statistical models are used to characterize images of prostate tissues, extracting different features. These features are then uses to segment the images in region of interests by means of an automatic procedure based on a statistical model of the extracted features. Finally, machine learning techniques are used for automatic classification of the different region of interests. In the context of neural activity signals, an example of bio-inspired dynamical network was developed to help in studies of motor-related processes in the brain of primate monkeys. The presented model aims to mimic the abstract functionality of a cell population in 7a parietal region of primate monkeys, during the execution of learned behavioural tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasound imaging is widely used in medical diagnostics as it is the fastest, least invasive, and least expensive imaging modality. However, ultrasound images are intrinsically difficult to be interpreted. In this scenario, Computer Aided Detection (CAD) systems can be used to support physicians during diagnosis providing them a second opinion. This thesis discusses efficient ultrasound processing techniques for computer aided medical diagnostics, focusing on two major topics: (i) Ultrasound Tissue Characterization (UTC), aimed at characterizing and differentiating between healthy and diseased tissue; (ii) Ultrasound Image Segmentation (UIS), aimed at detecting the boundaries of anatomical structures to automatically measure organ dimensions and compute clinically relevant functional indices. Research on UTC produced a CAD tool for Prostate Cancer detection to improve the biopsy protocol. In particular, this thesis contributes with: (i) the development of a robust classification system; (ii) the exploitation of parallel computing on GPU for real-time performance; (iii) the introduction of both an innovative Semi-Supervised Learning algorithm and a novel supervised/semi-supervised learning scheme for CAD system training that improve system performance reducing data collection effort and avoiding collected data wasting. The tool provides physicians a risk map highlighting suspect tissue areas, allowing them to perform a lesion-directed biopsy. Clinical validation demonstrated the system validity as a diagnostic support tool and its effectiveness at reducing the number of biopsy cores requested for an accurate diagnosis. For UIS the research developed a heart disease diagnostic tool based on Real-Time 3D Echocardiography. Thesis contributions to this application are: (i) the development of an automated GPU based level-set segmentation framework for 3D images; (ii) the application of this framework to the myocardium segmentation. Experimental results showed the high efficiency and flexibility of the proposed framework. Its effectiveness as a tool for quantitative analysis of 3D cardiac morphology and function was demonstrated through clinical validation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autism Spectrum Disorders (ASDs) describe a set of neurodevelopmental disorders. ASD represents a significant public health problem. Currently, ASDs are not diagnosed before the 2nd year of life but an early identification of ASDs would be crucial as interventions are much more effective than specific therapies starting in later childhood. To this aim, cheap an contact-less automatic approaches recently aroused great clinical interest. Among them, the cry and the movements of the newborn, both involving the central nervous system, are proposed as possible indicators of neurological disorders. This PhD work is a first step towards solving this challenging problem. An integrated system is presented enabling the recording of audio (crying) and video (movements) data of the newborn, their automatic analysis with innovative techniques for the extraction of clinically relevant parameters and their classification with data mining techniques. New robust algorithms were developed for the selection of the voiced parts of the cry signal, the estimation of acoustic parameters based on the wavelet transform and the analysis of the infant’s general movements (GMs) through a new body model for segmentation and 2D reconstruction. In addition to a thorough literature review this thesis presents the state of the art on these topics that shows that no studies exist concerning normative ranges for newborn infant cry in the first 6 months of life nor the correlation between cry and movements. Through the new automatic methods a population of control infants (“low-risk”, LR) was compared to a group of “high-risk” (HR) infants, i.e. siblings of children already diagnosed with ASD. A subset of LR infants clinically diagnosed as newborns with Typical Development (TD) and one affected by ASD were compared. The results show that the selected acoustic parameters allow good differentiation between the two groups. This result provides new perspectives both diagnostic and therapeutic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane interactions of porphyrinic photosensitizers (PSs) are known to play a crucial role for PS efficiency in photodynamic therapy (PDT). In the current paper, the interactions between 15 different porphyrinic PSs with various hydrophilic/lipophilic properties and phospholipid bilayers were probed by NMR spectroscopy. Unilamellar vesicles consisting of dioleoyl-phosphatidyl-choline (DOPC) were used as membrane models. PS-membrane interactions were deduced from analysis of the main DOPC (1)H-NMR resonances (choline and lipid chain signals). Initial membrane adsorption of the PSs was indicated by induced changes to the DOPC choline signal, i.e. a split into inner and outer choline peaks. Based on this parameter, the PSs could be classified into two groups, Type-A PSs causing a split and the Type-B PSs causing no split. A further classification into two subgroups each, A1, A2 and B1, B2 was based on the observed time-dependent changes of the main DOPC NMR signals following initial PS adsorption. Four different time-correlated patterns were found indicating different levels and rates of PS penetration into the hydrophobic membrane interior. The type of interaction was mainly affected by the amphiphilicity and the overall lipophilicity of the applied PS structures. In conclusion, the NMR data provided valuable structural and dynamic insights into the PS-membrane interactions which allow deriving the structural constraints for high membrane affinity and high membrane penetration of a given PS. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among other auditory operations, the analysis of different sound levels received at both ears is fundamental for the localization of a sound source. These so-called interaural level differences, in animals, are coded by excitatory-inhibitory neurons yielding asymmetric hemispheric activity patterns with acoustic stimuli having maximal interaural level differences. In human auditory cortex, the temporal blood oxygen level-dependent (BOLD) response to auditory inputs, as measured by functional magnetic resonance imaging (fMRI), consists of at least two independent components: an initial transient and a subsequent sustained signal, which, on a different time scale, are consistent with electrophysiological human and animal response patterns. However, their specific functional role remains unclear. Animal studies suggest these temporal components being based on different neural networks and having specific roles in representing the external acoustic environment. Here we hypothesized that the transient and sustained response constituents are differentially involved in coding interaural level differences and therefore play different roles in spatial information processing. Healthy subjects underwent monaural and binaural acoustic stimulation and BOLD responses were measured using high signal-to-noise-ratio fMRI. In the anatomically segmented Heschl's gyrus the transient response was bilaterally balanced, independent of the side of stimulation, while in opposite the sustained response was contralateralized. This dissociation suggests a differential role at these two independent temporal response components, with an initial bilateral transient signal subserving rapid sound detection and a subsequent lateralized sustained signal subserving detailed sound characterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to establish an MRI classification system for intervertebral disks using axial T2 mapping, with a special focus on evaluating early degenerative intervertebral disks. MATERIALS AND METHODS: Twenty-nine healthy volunteers (19 men, 10 women; age range, 20-44 years; mean age, 31.8 years) were studied, and axial T2 mapping was performed for the L3-L4, L4-L5, and L5-S1 intervertebral disks. Grading was performed using three classification systems for degenerative disks: our system using axial T2 mapping and two other conventional classification systems that focused on the signal intensity of the nucleus pulposus or the structural morphology in sagittal T2-weighted MR images. We analyzed the relationship between T2, which is known to correlate with change in composition of intervertebral disks, and degenerative grade determined using the three classification systems. RESULTS: With axial T2 mapping, differences in T2 between grades I and II were smaller and those between grades II and III, and between grades III and IV, were larger than those with the other grading systems. The ratio of intervertebral disks classified as grade I was higher with the conventional classification systems than that with axial T2 mapping. In contrast, the ratio of intervertebral disks classified as grade II or III was higher with axial T2 mapping than that with the conventional classification systems. CONCLUSION: Axial T2 mapping provides a more T2-based classification. The new system may be able to detect early degenerative changes before the conventional classification systems can.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Users of cochlear implant systems, that is, of auditory aids which stimulate the auditory nerve at the cochlea electrically, often complain about poor speech understanding in noisy environments. Despite the proven advantages of multimicrophone directional noise reduction systems for conventional hearing aids, only one major manufacturer has so far implemented such a system in a product, presumably because of the added power consumption and size. We present a physically small (intermicrophone distance 7 mm) and computationally inexpensive adaptive noise reduction system suitable for behind-the-ear cochlear implant speech processors. Supporting algorithms, which allow the adjustment of the opening angle and the maximum noise suppression, are proposed and evaluated. A portable real-time device for test in real acoustic environments is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Gray matter lesions are known to be common in multiple sclerosis (MS) and are suspected to play an important role in disease progression and clinical disability. A combination of magnetic resonance imaging (MRI) techniques, double-inversion recovery (DIR), and phase-sensitive inversion recovery (PSIR), has been used for detection and classification of cortical lesions. This study shows that high-resolution three-dimensional (3D) magnetization-prepared rapid acquisition with gradient echo (MPRAGE) improves the classification of cortical lesions by allowing more accurate anatomic localization of lesion morphology. METHODS: 11 patients with MS with previously identified cortical lesions were scanned using DIR, PSIR, and 3D MPRAGE. Lesions were identified on DIR and PSIR and classified as purely intracortical or mixed. MPRAGE images were then examined, and lesions were re-classified based on the new information. RESULTS: The high signal-to-noise ratio, fine anatomic detail, and clear gray-white matter tissue contrast seen in the MPRAGE images provided superior delineation of lesion borders and surrounding gray-white matter junction, improving classification accuracy. 119 lesions were identified as either intracortical or mixed on DIR/PSIR. In 89 cases, MPRAGE confirmed the classification by DIR/PSIR. In 30 cases, MPRAGE overturned the original classification. CONCLUSION: Improved classification of cortical lesions was realized by inclusion of high-spatial resolution 3D MPRAGE. This sequence provides unique detail on lesion morphology that is necessary for accurate classification.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel approach using both sustained vowels and connected speech, to detect obstructive sleep apnea (OSA) cases within a homogeneous group of speakers. The proposed scheme is based on state-of-the-art GMM-based classifiers, and acknowledges specifically the way in which acoustic models are trained on standard databases, as well as the complexity of the resulting models and their adaptation to specific data. Our experimental database contains a suitable number of utterances and sustained speech from healthy (i.e control) and OSA Spanish speakers. Finally, a 25.1% relative reduction in classification error is achieved when fusing continuous and sustained speech classifiers. Index Terms: obstructive sleep apnea (OSA), gaussian mixture models (GMMs), background model (BM), classifier fusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a method for the identification of different partial discharges (PDs) sources through the analysis of a collection of PD signals acquired with a PD measurement system. This method, robust and sensitive enough to cope with noisy data and external interferences, combines the characterization of each signal from the collection, with a clustering procedure, the CLARA algorithm. Several features are proposed for the characterization of the signals, being the wavelet variances, the frequency estimated with the Prony method, and the energy, the most relevant for the performance of the clustering procedure. The result of the unsupervised classification is a set of clusters each containing those signals which are more similar to each other than to those in other clusters. The analysis of the classification results permits both the identification of different PD sources and the discrimination between original PD signals, reflections, noise and external interferences. The methods and graphical tools detailed in this paper have been coded and published as a contributed package of the R environment under a GNU/GPL license.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palatal clicks are most interesting for human echolocation. Moreover, these sounds are suitable for other acoustic applications due to their regular mathematical properties and reproducibility. Simple and nondestructive techniques, bioinspired by synthetized pulses whose form reproduces the best features of palatal clicks, can be developed. The use of synthetic palatal pulses also allows detailed studies of the real possibilities of acoustic human echolocation without the problems associated with subjective individual differences. These techniques are being applied to the study of wood. As an example, a comparison of the performance of both natural and synthetic human echolocation to identify three different species of wood is presented. The results show that human echolocation has a vast potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many existing engineering works model the statistical characteristics of the entities under study as normal distributions. These models are eventually used for decision making, requiring in practice the definition of the classification region corresponding to the desired confidence level. Surprisingly enough, however, a great amount of computer vision works using multidimensional normal models leave unspecified or fail to establish correct confidence regions due to misconceptions on the features of Gaussian functions or to wrong analogies with the unidimensional case. The resulting regions incur in deviations that can be unacceptable in high-dimensional models. Here we provide a comprehensive derivation of the optimal confidence regions for multivariate normal distributions of arbitrary dimensionality. To this end, firstly we derive the condition for region optimality of general continuous multidimensional distributions, and then we apply it to the widespread case of the normal probability density function. The obtained results are used to analyze the confidence error incurred by previous works related to vision research, showing that deviations caused by wrong regions may turn into unacceptable as dimensionality increases. To support the theoretical analysis, a quantitative example in the context of moving object detection by means of background modeling is given.