969 resultados para Acid Substitution Matrices
Resumo:
Stability parameters for individual residues in Thermus thermophilus cysteine-free RNase H were determined by native state hydrogen exchange, thus providing a unique comparison of regional thermodynamics between thermophilic and mesophilic homologues. The general distribution of stability in the thermophilic protein is similar to that of its mesophilic homologue, with a proportional increase in stability for almost all residues. As a consequence, the residue-specific stabilities of the two proteins are remarkably similar under conditions where their global stabilities are the same. These results indicate that T. thermophilus RNase H is stabilized in a delocalized fashion, preserving a finely tuned balance of stabilizing interactions throughout the structure. Therefore, although protein stability can be altered by single amino acid substitution, evolution for optimal function may require more subtle and delocalized mechanisms.
Resumo:
The functional expression of homo-oligomeric α7 neuronal nicotinic and type 3 serotonin receptors is dependent on the activity of a cyclophilin. In this paper we demonstrate that the mechanism of cyclophilin action during functional homo-oligomeric receptor expression in Xenopus oocytes is distinct from the calcineurin-dependent immunosuppressive mechanism by showing that a nonimmunosuppressive analog of cyclosporin A (CsA), SDZ 211–811, reduces functional receptor expression to the same extent as CsA. The cytoplasmic subtype of cyclophilin, cyclophilin A (CyPA), appears to be required for functional receptor expression. This is because overexpression of CyPA and a CyPA mutant that is deficient in CsA binding activity reverses CsA-induced reduction in functional receptor expression. The mechanism of action of CyPA is likely to involve its prolyl isomerase activity because a mutant CyPA with a single amino acid substitution (arginine 55 to alanine) that is predicted to produce a 1000-fold attenuation in isomerase activity fails to reverse the cyclosporin A effect. Our data also suggest that CyPA does not form a stable complex with receptor subunits.
Resumo:
Drosophila Enabled (Ena) was initially identified as a dominant genetic suppressor of mutations in the Abelson tyrosine kinase and, more recently, as a member of the Ena/human vasodilator-stimulated phosphoprotein (VASP) family of proteins. We have used genetic, biochemical, and cell biological approaches to demonstrate the functional relationship between Ena and human VASP. In addition, we have defined the roles of Ena domains identified as essential for its activity in vivo. We have demonstrated that VASP rescues the embryonic lethality associated with loss of Ena function in Drosophila and have shown that Ena, like VASP, is associated with actin filaments and focal adhesions when expressed in cultured cells. To define sequences that are central to Ena function, we have characterized the molecular lesions present in two lethal ena mutant alleles that affected the Ena/VASP homology domain 1 (EVH1) and EVH2. A missense mutation that resulted in an amino acid substitution in the EVH1 domain eliminated in vitro binding of Ena to the cytoskeletal protein zyxin, a previously reported binding partner of VASP. A nonsense mutation that resulted in a C-terminally truncated Ena protein lacking the EVH2 domain failed to form multimeric complexes and exhibited reduced binding to zyxin and the Abelson Src homology 3 domain. Our analysis demonstrates that Ena and VASP are functionally homologous and defines the conserved EVH1 and EVH2 domains as central to the physiological activity of Ena.
Resumo:
Activation of the p53 tumor suppressor protein has been demonstrated to block cell growth by inducing either a transient cell cycle arrest or programmed cell death (apoptosis). Although evidence exists linking p53’s function as an activator of transcription to its ability to effect cell cycle arrest, the role of this activity in the induction of apoptosis remains unclear. To gain insight into the molecular mechanisms underlying p53-mediated antiproliferative pathways, a study was initiated to explore the functions of a putative p53 signaling domain. This region of the human p53 protein is localized between amino acids 61 and 94 (out of 393) and is noteworthy in that it contains five repeats of the sequence PXXP (where P represents proline and X any amino acid). This motif has been shown to play a role in signal transduction via its SH3 domain binding activity. A p53 cDNA deletion mutant (ΔproAE), which lacks this entire proline-rich domain (deleted for amino acids 62–91), was created and characterized for a variety of p53 functions. The entire domain has been shown to be completely dispensable for transcriptional activation. On the other hand, this deletion of the p53 proline-rich domain impairs p53’s ability to suppress tumor cell growth in culture. Amino acid substitution mutations at residues 22 and 23 of p53 (eliminates transcriptional activity) also impair p53-mediated inhibition of cell growth in culture. Unlike wild-type p53, the ΔproAE mutant cDNA can be stably expressed in tumor derived cell lines with few immediate detrimental effects. These cells express physiologic levels of p53 protein that are induced normally in response to DNA damage, indicating that removal of the proline-rich domain does not disrupt p53’s upstream regulation by DNA damage. These data indicate that, in addition to the transcriptional activation domain, the p53 proline-rich domain plays a critical role in the transmission of antiproliferative signals downstream of the p53 protein and may link p53 to a direct signal transduction pathway.
Resumo:
Hyaluronan (HA), a large glycosaminoglycan abundant in the extracellular matrix, is important in cell migration during embryonic development, cellular proliferation, and differentiation and has a structural role in connective tissues. The turnover of HA requires endoglycosidic breakdown by lysosomal hyaluronidase, and a congenital deficiency of hyaluronidase has been thought to be incompatible with life. However, a patient with a deficiency of serum hyaluronidase, now designated as mucopolysaccharidosis IX, was recently described. This patient had a surprisingly mild clinical phenotype, including notable periarticular soft tissue masses, mild short stature, an absence of neurological or visceral involvement, and histological and ultrastructural evidence of a lysosomal storage disease. To determine the molecular basis of mucopolysaccharidosis IX, we analyzed two candidate genes tandemly distributed on human chromosome 3p21.3 and encoding proteins with homology to a sperm protein with hyaluronidase activity. These genes, HYAL1 and HYAL2, encode two distinct lysosomal hyaluronidases with different substrate specificities. We identified two mutations in the HYAL1 alleles of the patient, a 1412G → A mutation that introduces a nonconservative amino acid substitution (Glu268Lys) in a putative active site residue and a complex intragenic rearrangement, 1361del37ins14, that results in a premature termination codon. We further show that these two hyaluronidase genes, as well as a third recently discovered adjacent hyaluronidase gene, HYAL3, have markedly different tissue expression patterns, consistent with differing roles in HA metabolism. These data provide an explanation for the unexpectedly mild phenotype in mucopolysaccharidosis IX and predict the existence of other hyaluronidase deficiency disorders.
Resumo:
Retroviral Gag polyproteins have specific regions, commonly referred to as late assembly (L) domains, which are required for the efficient separation of assembled virions from the host cell. The L domain of HIV-1 is in the C-terminal p6gag domain and contains an essential P(T/S)AP core motif that is widely conserved among lentiviruses. In contrast, the L domains of oncoretroviruses such as Rous sarcoma virus (RSV) have a more N-terminal location and a PPxY core motif. In the present study, we used chimeric Gag constructs to probe for L domain activity, and observed that the unrelated L domains of RSV and HIV-1 both induced the appearance of Gag-ubiquitin conjugates in virus-like particles (VLP). Furthermore, a single-amino acid substitution that abolished the activity of the RSV L domain in VLP release also abrogated its ability to induce Gag ubiquitination. Particularly robust Gag ubiquitination and enhancement of VLP release were observed in the presence of the candidate L domain of Ebola virus, which contains overlapping P(T/S)AP and PPxY motifs. The release defect of a minimal Gag construct could also be corrected through the attachment of a peptide that serves as a physiological docking site for the ubiquitin ligase Nedd4. Furthermore, VLP formation by a full-length Gag polyprotein was sensitive to lactacystin, which depletes the levels of free ubiquitin through inhibition of the proteasome. Our findings suggest that the engagement of the ubiquitin conjugation machinery by L domains plays a crucial role in the release of a diverse group of enveloped viruses.
Resumo:
Sulfite oxidase catalyzes the terminal reaction in the degradation of sulfur amino acids. Genetic deficiency of sulfite oxidase results in neurological abnormalities and often leads to death at an early age. The mutation in the sulfite oxidase gene responsible for sulfite oxidase deficiency in a 5-year-old girl was identified by sequence analysis of cDNA obtained from fibroblast mRNA to be a guanine to adenine transition at nucleotide 479 resulting in the amino acid substitution of Arg-160 to Gln. Recombinant protein containing the R160Q mutation was expressed in Escherichia coli, purified, and characterized. The mutant protein contained its full complement of molybdenum and heme, but exhibited 2% of native activity under standard assay conditions. Absorption spectroscopy of the isolated molybdenum domains of native sulfite oxidase and of the R160Q mutant showed significant differences in the 480- and 350-nm absorption bands, suggestive of altered geometry at the molybdenum center. Kinetic analysis of the R160Q protein showed an increase in Km for sulfite combined with a decrease in kcat resulting in a decrease of nearly 1,000-fold in the apparent second-order rate constant kcat/Km. Kinetic parameters for the in vitro generated R160K mutant were found to be intermediate in value between those of the native protein and the R160Q mutant. Native sulfite oxidase was rapidly inactivated by phenylglyoxal, yielding a modified protein with kinetic parameters mimicking those of the R160Q mutant. It is proposed that Arg-160 attracts the anionic substrate sulfite to the binding site near the molybdenum.
Resumo:
Mucopolysaccharidosis type VII (MPS VII; Sly syndrome) is an autosomal recessive lysosomal storage disorder due to an inherited deficiency of β-glucuronidase. A naturally occurring mouse model for this disease was discovered at The Jackson Laboratory and shown to be due to homozygosity for a 1-bp deletion in exon 10 of the gus gene. The murine model MPS VII (gusmps/mps) has been very well characterized and used extensively to evaluate experimental strategies for lysosomal storage diseases, including bone marrow transplantation, enzyme replacement therapy, and gene therapy. To enhance the value of this model for enzyme and gene therapy, we produced a transgenic mouse expressing the human β-glucuronidase cDNA with an amino acid substitution at the active site nucleophile (E540A) and bred it onto the MPS VII (gusmps/mps) background. We demonstrate here that the mutant mice bearing the active site mutant human transgene retain the clinical, morphological, biochemical, and histopathological characteristics of the original MPS VII (gusmps/mps) mouse. However, they are now tolerant to immune challenge with human β-glucuronidase. This “tolerant MPS VII mouse model” should be useful for preclinical trials evaluating the effectiveness of enzyme and/or gene therapy with the human gene products likely to be administered to human patients with MPS VII.
Resumo:
Cat's claw (Doxantha unguis-cati L.) vine accumulates nearly 80% palmitoleic acid (16:1Δ9) plus cis-vaccenic acid (18:1Δ11) in its seed oil. To characterize the biosynthetic origin of these unusual fatty acids, cDNAs for acyl-acyl carrier protein (acyl-ACP) desaturases were isolated from developing cat's claw seeds. The predominant acyl-ACP desaturase cDNA identified encoded a polypeptide that is closely related to the stearoyl (Δ9–18:0)-ACP desaturase from castor (Ricinis communis L.) and other species. Upon expression in Escherichia coli, the cat's claw polypeptide functioned as a Δ9 acyl-ACP desaturase but displayed a distinct substrate specificity for palmitate (16:0)-ACP rather than stearate (18:0)-ACP. Comparison of the predicted amino acid sequence of the cat's claw enzyme with that of the castor Δ9–18:0-ACP desaturase suggested that a single amino acid substitution (L118W) might account in large part for the differences in substrate specificity between the two desaturases. Consistent with this prediction, conversion of leucine-118 to tryptophan in the mature castor Δ9–18:0-ACP desaturase resulted in an 80-fold increase in the relative specificity of this enzyme for 16:0-ACP. The alteration in substrate specificity observed in the L118W mutant is in agreement with a crystallographic model of the proposed substrate-binding pocket of the castor Δ9–18:0-ACP desaturase.
Resumo:
We describe the construction of a safe, replication-defective and efficient lentiviral vector suitable for in vivo gene delivery. The reverse transcription of the vector was found to be a rate-limiting step; therefore, promoting the reaction inside the vector particles before delivery significantly enhanced the efficiency of gene transfer. After injection into the brain of adult rats, sustained long-term expression of the transgene was obtained in the absence of detectable pathology. A high proportion of the neurons in the areas surrounding the injection sites of the vector expressed the transduced beta-galactosidase gene. This pattern was invariant in animals sacrificed several months after a single administration of the vector. Transduction occurs by integration of the vector genome, as it was abolished by a single amino acid substitution in the catalytic site of the integrase protein incorporated in the vector. Development of clinically acceptable derivatives of the lentiviral vector may thus enable the sustained delivery of significant amounts of a therapeutic gene product in a wide variety of somatic tissues.
Resumo:
The weaver mutation in mice results in a severe ataxia that is attributable to the degeneration of cerebellar granule cells and dopaminergic neurons in the substantia nigra. Recent genetic studies indicate that the GIRK2 gene is altered in weaver. This gene codes for a G-protein-activated, inwardly rectifying K+ channel protein (8). The mutation results in a single amino acid substitution (glycine-->serine) in the pore-forming H5 region of the channel. The functional consequences of this mutation appear to depend upon the co-expression of other GIRK subunits--leading to either a gain or loss of function. Here, we show that G-protein-activated inwardly rectifying K+ currents are significantly reduced in cerebellar granule cells from animals carrying the mutant allele. The reduction is most pronounced in homozygous neurons. These findings suggest that the death of neurons in weaver is attributable to the loss of GIRK2-mediated currents, not to the expression of a nonspecific cation current.
Resumo:
RAG1 protein is essential for the activation of V(D)J recombination in developing lymphocytes (V, variable; D, diversity; J, joining). However, it has not been determined whether its role involves substrate recognition and catalysis. A single amino acid substitution mutation in the RAG1 gene has now been identified that renders its activity sensitive to the sequence of the coding region abutting the heptamer site in the recombination signal sequence. These results strongly imply that RAG1 interacts directly with DNA.
Resumo:
In conjunction with other general initiation factors, the TATA box-binding protein (TBP) can direct basal transcription by RNA polymerase II from TATA-containing promoters, but its stable interaction with TBP-associated factors (TAFs) in the TFIID complex is required both for activator-dependent transcription and for basal transcription directed by an initiator element. We have generated a TATA-binding-defective TFIID complex containing an amino acid substitution in the DNA-binding surface of its TBP subunit. This mutated TFIID is defective in both basal and activated transcription from core promoters containing only a TATA box but supports transcription from initiator-containing promoters independently of the presence or absence of a TATA sequence. Our results show that a functional initiator element is needed to bypass the requirement for an active TATA DNA-binding surface in TFIID and imply that gene-specific transcription can be achieved by modulating distinct core promoter-specific TFIID functions--e.g., TBP-TATA versus TAF-initiator interactions.
Resumo:
The yeast two-hybrid system and far-Western protein blot analysis were used to demonstrate dimerization of human double-stranded RNA (dsRNA)-dependent protein kinase (PKR) in vivo and in vitro. A catalytically inactive mutant of PKR with a single amino acid substitution (K296R) was found to dimerize in vivo, and a mutant with a deletion of the catalytic domain of PKR retained the ability to dimerize. In contrast, deletion of the two dsRNA-binding motifs in the N-terminal regulatory domain of PKR abolished dimerization. In vitro dimerization of the dsRNA-binding domain required the presence of dsRNA. These results suggest that the binding of dsRNA by PKR is necessary for dimerization. The mammalian dsRNA-binding protein TRBP, originally identified on the basis of its ability to bind the transactivation region (TAR) of human immunodeficiency virus RNA, also dimerized with itself and with PKR in the yeast assay. Taken together, these results suggest that complexes consisting of different combinations of dsRNA-binding proteins may exist in vivo. Such complexes could mediate differential effects on gene expression and control of cell growth.
Resumo:
We identified an autoantibody that reacts with calpastatin [an inhibitor protein of the calcium-dependent neutral protease calpain (EC 3.4.22.17)]. In early immunoblot studies, sera from patients with rheumatoid arthritis (RA) recognized unidentified 60-, 45-, and 75-kDa proteins in HeLa cell extracts. To identify these autoantigens, we used patient sera to clone cDNAs from a lambda gt11 expression library. We isolated clones of four genes that expressed fusion proteins recognized by RA sera. The 1.2-kb cDNA insert (termed RA-6) appeared to encode a polypeptide corresponding to the 60-kDa antigen from HeLa cells, since antibodies bound to the RA-6 fusion protein also reacted with a 60-kDa HeLa protein. The deduced amino acid sequence of the RA-6 cDNA was completely identical with the C-terminal 178 amino acids of human calpastatin except for one amino acid substitution. Patient sera that reacted with the RA-6 also bound pig muscle calpastatin, and a monoclonal antibody to human calpastatin recognized the RA-6 fusion protein, confirming the identity of RA-6 with calpastatin. Moreover, the purified RA-6 fusion protein inhibited the proteolytic activity of calpain, and IgG from a serum containing anti-calpastatin antibodies blocked the calpastatin activity of the RA-6 fusion protein. Immunoblots of the RA-6 product detected autoantibodies to calpastatin in 57% of RA patients; this incidence was significantly higher than that observed in other systemic rheumatic diseases, including systemic lupus erythematosus (27%), polymyositis/dermatomyositis (24%), systemic sclerosis (38%), and overlap syndrome (29%). Thus, anti-calpastatin antibodies are present most frequently in patients with RA and may participate in pathogenic mechanisms of rheumatic diseases.