1000 resultados para Acid Ibx


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carrot mottle umbravirus (CMoV) has always been found co-infecting plants with carrot red leaf luteovirus (CRLV) and in carrot (Daucus carota) these co-infections are associated with carrot motley dwarf disease (CMD). CMD occurs wherever carrots are grown. Hence, CMoV was believed to have a corresponding global distribution. However, little or no hybridisation was detected between cDNA generated from the sequenced Australian isolate of CMoV (CMoV-A) and RNA from the much studied Scottish isolate of CMoV (CMoV-S). A weak hybridisation signal was obtained using cDNA to a conserved part of the RNA-dependent RNA polymerase gene of CMoV-A, but when cDNAs to other parts of the CMoV-A genome were used as probes there was no detectable hybridisation with CMoV-S RNA. This lack of hybridisation suggests that the two virus isolates have relatively divergent genomes and that they should be regarded as distinct virus species. Both viruses are transmitted by Cavariella aegopodii, but only with the help of CRLV, and they yield almost identical double-stranded RNA profiles. For these reasons, we propose that the CMoV isolate from Australia be renamed carrot mottle mimic umbravirus (CMoMV). cDNA to CMoMV RNA hybridised with RNA from an isolate from New Zealand, whereas cDNA to CMoV-S RNA hybridised with RNA from isolates from England and Morocco but not to RNA from the isolate from New Zealand. Although preliminary, these data suggest that CMoV and CMoMV may have different global distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic wounds are an important health problem because they are difficult to heal and treatment is often complicated, lengthy and expensive. For a majority of sufferers the most common outcomes are long-term immobility, infection and prolonged hospitalisation. There is therefore an urgent need for effective therapeutics that will enhance ulcer healing and patient quality of life, and will reduce healthcare costs. Studies in our laboratory have revealed elevated levels of purine catabolites in wound fluid from patients with venous leg ulcers. In particular, we have discovered that uric acid is elevated in wound fluid, with higher concentrations correlating with increased wound severity. We have also revealed a corresponding depletion in uric acid precursors, including adenosine. Further, we have revealed that xanthine oxidoreductase, the enzyme that catalyses the production of uric acid, is present at elevated levels in wound fluid. Taken together, these findings provide evidence that xanthine oxidoreductase may have a function in the formation or persistence of chronic wounds. Here we describe the potential function of xanthine oxidoreductase and uric acid accumulation in the wound site, and the effect of xanthine oxidoreductase in potentiating the inflammatory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimation of total protein concentration is an essential step in any protein- or peptide-centric analysis pipeline. This study demonstrates that urobilin, a breakdown product of heme and a major constituent of urine, interferes considerably with the bicinchoninic acid (BCA) assay. This interference is probably due to the propensity of urobilin to reduce cupric ions (Cu2+) to cuprous ions (Cu1+), thus mimicking the reduction of copper by proteins, which the assay was designed to do. In addition, it is demonstrated that the Bradford assay is more resistant to the influence of urobilin and other small molecules. As such, urobilin has a strong confounding effect on the estimate of total protein concentrations obtained by BCA assay and thus this assay should not be used for urinary protein quantification. It is recommended that the Bradford assay be used instead.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background L-type amino acid transporters (LATs) uptake neutral amino acids including L-leucine into cells, stimulating mammalian target of rapamycin complex 1 signaling and protein synthesis. LAT1 and LAT3 are overexpressed at different stages of prostate cancer, and they are responsible for increasing nutrients and stimulating cell growth. Methods We examined LAT3 protein expression in human prostate cancer tissue microarrays. LAT function was inhibited using a leucine analog (BCH) in androgen-dependent and -independent environments, with gene expression analyzed by microarray. A PC-3 xenograft mouse model was used to study the effects of inhibiting LAT1 and LAT3 expression. Results were analyzed with the Mann-Whitney U or Fisher exact tests. All statistical tests were two-sided. Results LAT3 protein was expressed at all stages of prostate cancer, with a statistically significant decrease in expression after 4–7 months of neoadjuvant hormone therapy (4–7 month mean = 1.571; 95% confidence interval = 1.155 to 1.987 vs 0 month = 2.098; 95% confidence interval = 1.962 to 2.235; P = .0187). Inhibition of LAT function led to activating transcription factor 4–mediated upregulation of amino acid transporters including ASCT1, ASCT2, and 4F2hc, all of which were also regulated via the androgen receptor. LAT inhibition suppressed M-phase cell cycle genes regulated by E2F family transcription factors including critical castration-resistant prostate cancer regulatory genes UBE2C, CDC20, and CDK1. In silico analysis of BCH-downregulated genes showed that 90.9% are statistically significantly upregulated in metastatic castration-resistant prostate cancer. Finally, LAT1 or LAT3 knockdown in xenografts inhibited tumor growth, cell cycle progression, and spontaneous metastasis in vivo. Conclusion Inhibition of LAT transporters may provide a novel therapeutic target in metastatic castration-resistant prostate cancer, via suppression of mammalian target of rapamycin complex 1 activity and M-phase cell cycle genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arachidonic acid metabolism through cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P-450 epoxygenase (EPOX) pathways is responsible for the formation of biologically active eicosanoids, including prostanoids, leukotrienes, hydroxyeicosatetraenoic acid, epoxyeicosatrienoic acid and hydroperoxyeicosatetraenoic acids. Altered eicosanoid expression levels are commonly observed during tumour development and progression of a range of malignancies, including non-small cell lung cancer (NSCLC). Arachidonic acid-derived eicosanoids affect a range of biological phenomena to modulate tumour processes such as cell growth, survival, angiogenesis, cell adhesion, invasion and migration and metastatic potential. Numerous studies have demonstrated that eicosanoids modulate NSCLC development and progression, while targeting these pathways has generally been shown to inhibit tumour growth/progression. Modulation of these arachidonic acid-derived pathways for the prevention and/or treatment of NSCLC has been the subject of significant interest over the past number of years, with a number of clinical trials examining the potential of COX and LOX inhibitors in combination with traditional and novel molecular approaches. However, results from these trials have been largely disappointing. Furthermore, enthusiasm for the use of selective COX-2 inhibitors for cancer prevention/treatment waned, due to their association with adverse cardiovascular events in chemoprevention trials. While COX and LOX targeting may both retain promise for NSCLC prevention and/or treatment, there is an urgent need to understand the downstream signalling mechanisms through which these and other arachidonic acid-derived signalling pathways mediate their effects on tumourigenesis. This will allow for development of safer and potentially more effective strategies for NSCLC prevention and/or treatment. Chemoprevention studies with PGI2 analogues have demonstrated considerable promise, while binding to/signalling through PGE2 receptors have also been the subject of interest for NSCLC treatment. In this chapter, the role of the eicosanoid signalling pathways in non-small cell lung cancer will be discussed. In particular, the effect of the eicosanoids on tumour cell proliferation, their roles in induction of cell death, effects on angiogenesis, migration, invasion and their regulation of the immune response will be assessed, with signal transduction pathways involved in these processes also discussed. Finally, novel approaches targeting these arachidonic acid-derived eicosanoids (using pharmacological or natural agents) for chemoprevention and/or treatment of NSCLC will be outlined. Elucidating the molecular mechanisms underlying the effects of specific or general arachidonic acid pathway modulators may lead to the design of biologically and pharmacologically targeted therapeutic strategies for NSCLC prevention/treatment, which may be used alone or in combination with conventional therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of poly(acrylic acid) (PAA) with different end groups and molar masses prepared by Atom Transfer Radical Polymerization (ATRP) to inhibit the formation of calcium carbonate scale at low and elevated temperatures was investigated. Inhibition of CaCO3 deposition was affected by the hydrophobicity of the end groups of PAA, with the greatest inhibition seen for PAA with hydrophobic end groups of moderate size (6–10 carbons). The morphologies of CaCO3 crystals were significantly distorted in the presence of these PAAs. The smallest morphological change was in the presence of PAA with long hydrophobic end groups (16 carbons) and the relative inhibition observed for all species were in the same order at 30 °C and 100 °C. As well as distorting morphologies, the scale inhibitors appeared to stabilize the less thermodynamically favorable polymorph, vaterite, to a degree proportional to their ability to inhibit precipitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sugarcane products represent an abundant and relatively low cost carbon resource that can be utilised to produce chemical intermediates such as levulinic acid and furanics. These chemicals can be easily upgraded to commodity and specialty chemicals and biofuels by high yielding and well established technologies. However, there are challenges and technical hurdles that need to be overcome before these chemical intermediates can be cost-effectively produced in commercial quantities. The paper reviews production of levulinic acid and furanics from sugars by homogeneous mineral acid catalysts, and reports on preliminary studies on the production of these compounds with environmentally friendly biodegradable sulfonic acids. The yields (>50% of theoretical) of levulinic acid, formic acid and furfural obtained with these organic acids are comparable to that of sulphuric acid currently used for their production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RATIONALE Both traditional electron ionization and electrospray ionization tandem mass spectrometry have demonstrated limitations in the unambiguous identification of fatty acids. In the former case, high electron energies lead to extensive dissociation of the radical cations from which little specific structural information can be obtained. In the latter, conventional collision-induced dissociation (CID) of even-electron ions provides little intra-chain fragmentation and thus few structural diagnostics. New approaches that harness the desirable features of both methods, namely radical-driven dissociation with discrete energy deposition, are thus required. METHODS Herein we describe the derivatization of a structurally diverse suite of fatty acids as 4-iodobenzyl esters (FAIBE). Electrospray ionization of these derivatives in the presence of sodium acetate yields abundant [M+Na]+ ions that can be mass-selected and subjected to laser irradiation (=266nm) on a modified linear ion-trap mass spectrometer. RESULTS Photodissociation (PD) of the FAIBE derivatives yields abundant radical cations by loss of atomic iodine and in several cases selective dissociation of activated carboncarbon bonds (e.g., at allylic positions) are also observed. Subsequent CID of the [M+NaI]center dot+ radical cations yields radical-directed dissociation (RDD) mass spectra that reveal extensive carboncarbon bond dissociation without scrambling of molecular information. CONCLUSIONS Both PD and RDD spectra obtained from derivatized fatty acids provide a wealth of structural information including the position(s) of unsaturation, chain-branching and hydroxylation. The structural information obtained by this approach, in particular the ability to rapidly differentiate isomeric lipids, represents a useful addition to the lipidomics tool box. Copyright (c) 2013 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatty acids are long-chain carboxylic acids that readily produce \[M - H](-) ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely \[M - 2H + (FeCl)-Cl-II](-). In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., \[M - 2H + Na](-)). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an \[M - H + NaF](-) ion. Subsequent collision-induced dissociation (CID) results in the desired \[M - 2H + Na](-) ion via the neutral loss of HF. (2) Direct formation of the \[M - 2H + Na](-) ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of \[M - 2H + Na](-) ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five anthranilic acid derivatives, a mixture I of three new compounds 11′-hexadecenoylanthranilic acid (1), 9′-hexadecenoylanthranilic acid (2), and 7′-hexadecenoylanthranilic acid (3), as well as a new compound 9,12,15-octadecatrienoylanthranilic acid (4) together with a new natural product, hexadecanoylanthranilic acid (5), were isolated from Geijera parviflora Lindl. (Rutaceae). Their structures were elucidated by extensive spectroscopic measurements, and the positions of the double bonds in compounds 1-3 of the mixture I were determined by tandem mass spectrometry employing ozone-induced dissociation. The mixture I and compound 5 showed good antibacterial activity against several Gram-positive strains. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrido[1,2-a]benzimidazoles1, 2a are interesting compounds both from the viewpoint of medicinal chemistry2–7 (solubility,7 DNA intercalation3) and materials chemistry8 (fluorescence). Of note among the former is the antibiotic drug Rifaximin,5 which contains this heteroaromatic core. The classical synthetic approach for the assembly of pyrido[1,2-a]benzimidazoles is by [3+3] cyclocondensation of benzimidazoles containing a methylene group at C2 with appropriate bielectrophiles.2a However, these procedures are often low-yielding, involve indirect/lengthy sequences, and/or provide access to a limited range of products, primarily providing derivatives with substituents located on the pyridine ring (A ring, Scheme 1).2–4 Theoretically, a good alternative synthetic method for the synthesis of pyrido[1,2-a]benzimidazoles with substituents in the benzene ring (C ring) should be accessible by intramolecular transition-metal-catalyzed CN bond formation in N-(2-chloroaryl)pyridin-2-amines, based on chemistry recently developed in our research group.9 These substrates themselves are easily available through SNAr or selective Pd-catalyzed amination10 of 2-chloropyridine with 2-chloroanilines.11 If a synthetic procedure that eliminated the need for preactivation of the 2-position of the 2-chloroarylamino entity could be developed, this would be even more powerful, as anilines are more readily commercially available than 2-chloroanilines. Therefore the synthesis of pyrido[1,2-a]benzimidazoles (4) by a transition-metal-catalyzed intramolecular CH amination approach from N-arylpyridin-2-amines (3) was explored (Scheme 1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Phospholipids are a major component of lens fiber cells and influence the activity of membrane proteins. Previous investigations of fatty acid uptake by the lens are limited. The purpose of the present study was thus to determine whether exogenous fatty acids could be taken up by the rat lens and incorporated into molecular phospholipids. METHODS. Lenses were incubated with fluorescently labeled palmitic acid and then analyzed by confocal microscopy. Concurrently, lenses incubated with either fluorescently labeled palmitic acid or the more physiologically relevant (13)C(18)-oleic acid were sectioned into nuclear and cortical regions and analyzed by highly sensitive and structurally selective electrospray ionization tandem mass spectrometry techniques. RESULTS. The detection of fluorescently labeled palmitic acid, even after 16 hours of incubation, was limited to approximately the outer 25% to 30% of the rat lens. Mass spectrometry also revealed the presence of free (13)C(18)-oleic acid in the cortex but not the nucleus. No evidence could be found for incorporation of fluorescently labeled palmitic acid into phospholipids; however, a low level of (13)C(18)-oleic acid incorporation into phosphatidylethanolamine (PE), specifically PE (PE 16:0/(13)C(18) 18:1) was detected in the lens cortex after 16 hours. CONCLUSIONS. These data demonstrate that uptake of exogenous (e.g., dietary fatty acids) by the lens and their incorporation into phospholipids is minimal, most likely occurring only during de novo synthesis in the outermost region of the lens. This finding adds support to the hypothesis that once synthesized there is no active remodeling or turnover of fiber cell phospholipids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perflurooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) have been used for a variety of applications including fluoropolymer processing, fire-fighting foams and surface treatments since the 1950s. Both PFOS and PFOA are polyfluoroalkyl chemicals (PFCs), man-made compounds that are persistent in the environment and humans; some PFCs have shown adverse effects in laboratory animals. Here we describe the application of a simple one compartment pharmacokinetic model to estimate total intakes of PFOA and PFOS for the general population of urban areas on the east coast of Australia. Key parameters for this model include the elimination rate constants and the volume of distribution within the body. A volume of distribution was calibrated for PFOA to a value of 170ml/kgbw using data from two communities in the United States where the residents' serum concentrations could be assumed to result primarily from a known and characterized source, drinking water contaminated with PFOA by a single fluoropolymer manufacturing facility. For PFOS, a value of 230ml/kgbw was used, based on adjustment of the PFOA value. Applying measured Australian serum data to the model gave mean+/-standard deviation intake estimates of PFOA of 1.6+/-0.3ng/kgbw/day for males and females >12years of age combined based on samples collected in 2002-2003 and 1.3+/-0.2ng/kg bw/day based on samples collected in 2006-2007. Mean intakes of PFOS were 2.7+/-0.5ng/kgbw/day for males and females >12years of age combined based on samples collected in 2002-2003, and 2.4+/-0.5ng/kgbw/day for the 2006-2007 samples. ANOVA analysis was run for PFOA intake and demonstrated significant differences by age group (p=0.03), sex (p=0.001) and date of collection (p<0.001). Estimated intake rates were highest in those aged >60years, higher in males compared to females, and higher in 2002-2003 compared to 2006-2007. The same results were seen for PFOS intake with significant differences by age group (p<0.001), sex (p=0.001) and date of collection (p=0.016).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By combining gene design and heterologous over-expression of Rhodotorula gracilis D-amino acid oxidase (RgDAO) in Pichia pastoris, enzyme production was enhanced by one order of magnitude compared to literature benchmarks, giving 350 kUnits/l of fed-batch bioreactor culture with a productivity of 3.1 kUnits/l h. P. pastoris cells permeabilized by freeze-drying and incubation in 2-propanol (10% v/v) produce a highly active (1.6 kUnits/g dry matter) and stable oxidase preparation. Critical bottlenecks in the development of an RgDAO catalyst for industrial applications have been eliminated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.