953 resultados para Accelerated environmental aging. Central hole. Fracture mechanics. Mechanical properties. Residual properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microstructures and mechanical properties of the Mg-7Y-4Gd-xZn-0.4Zr (x = 0.5, 1.5, 3, and 5 wt.%) alloys in the as-cast, as-extruded, and peak-aged conditions have been investigated by using optical microscopy, scanning electron microscope, X-ray diffraction, and transmission electron microscopy. It is found that the peak-aged Mg-7Y-4Gd-1.5Zn-0.4Zr alloys have the highest strength after aging at 220 A degrees C. The highest ultimate tensile strength and yield tensile strength are 418 and 320 MPa, respectively. The addition of 1.5 wt.% Zn to the based alloys results in a greater aging effect and better mechanical properties at both room and elevated temperatures. The improved mechanical properties are mainly ascribed to both a fine beta' phase and a long periodic stacking-ordered structure, which coexist together in the peak-aged alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La2Zr2O7 (LZ) is a promising thermal barrier coating material for the high-temperature applications, which could be significantly toughened by the YAG nanopowder incorporated into the matrix. The composites of xYAG/(1-x)LZ (Y=10, 15, 20 vol. %, LZ-x-YAG) were densified by means of high-pressure sintering (HPS) under a pressure of 4.5 GPa at 1650 degrees C for 5 min, by which a high-relative density above 93% could be obtained. The morphologies of the fractured surfaces were investigated by the scanning electron microscope, and the fracture toughness and Vicker's-hardness of the composites were evaluated by the microindentation. The grain size of the LZ matrix drops significantly with the addition of YAG nanoparticles and the fracture type changes from the intergranular to a mixture type of the transgranular and intergranular in the nanocomposites. The LZ-20-YAG nanocomposite has a fracture toughness of 1.93 MPa m(1/2), which is obviously higher than that of the pure LZ (1.57 MPa m(1/2)), and the toughening mechanism is discussed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bulk Ti45Zr35Ni17Cu3 alloy, which consisted of the icosahedral quasicrystalline phase, was prepared by mechanical alloying(MA) and subsequent pulse discharge sintering. Ti45Zr35Ni17Cu3 amorphous powders (with particle size < 50 mu m) were obtained after mechanical alloying for more than 150 h from the mixture of the elemental powder. The transformation temperature range from amorphous phase to the quasicrystalline phase was from 400 K to 900 K. The mechanical properties of the bulk quasicrystalline alloy have been examined at room temperature. The Vickers hardness and compressive fracture strength were 620 +/- 40 and 1030 +/- 60 MPa, respectively. The bulk quasicrystalline alloy exhibited the elastic deformation by the compressive test. The fracture mode was brittle cleavage fracture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphology, mechanical properties, and interfacial interaction of polyamide 1010/polypropylene (PA1010/ PP) blends compatibilized with polypropylene grafted with glycidyl methacrylate (PP-g-GMA) were studied. It was found that the size of the PP domains, tensile and impact strength of ternary blends, and adhesion fracture energy between two layers of PA1010 and PP were all significantly dependent on the PP-g-GMA contents in the PP layer. Correlations between morphology and related properties were sought. The improvements in properties have been attributed to chemical and physical interaction occurring between PA1010 and PP-g-GMA. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical properties and morphology of blends of polypropylene (PP) with high molecular weight polyethylene (HMWPE) prepared by coprecipitation from xylene solution are investigated. Compared to blends of PP with commercial high-density polyethylene (HDPE), the mechanical properties of the blends of PP/HMWPE are much superior to those of PP/HDPE blends. Not only is the tensile strength stronger, but also the elongation at break is much higher than that of the PP/HDPE blends of the same composition. These differences increase with increasing HMWPE and HDPE content. Scanning electron microscopy of the fracture surface resulting from the tensile tests shows that the compatibility in PP/HMWPE blends is much better than that in PP/HDPE blends. This is most likely attributable to the enhanced chain entanglement of HMWPE with the PP in the amorphous phase due to the lower crystallinity, owing to the high molecular weight of the HMWPE, and a much more flexible chain. The thermal behavior and spherulite morphology of both blends are also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This experimental study examines the role of formulated molecular weight between crosslink sites on the temperature resistance and mechanical properties of composites based on a polyimide containing a diphenyl thioether unit (PTI). The composites are fabricated by in situ polymerization of monomer reactants (PMR) using three monomeric ingredients: bis(3,4-dicarboxyphenyl) sulfide dianhydride (TDPA); 4,4'-methylene dianiline (MDA); and the monomethyl ester of norbornene anhydride (NE). By changing monomeric molar ratio, three formulations are prepared, in which formulated molecular weight between crosslink sites varies from 1487 to 3446 g mol(-1). Unidirectional composite laminates from each formulation and T300 carbon fibres are compression moulded and cut into a series of test specimens. By measuring the glass transition temperature (T-g), Mode I interlaminar fracture toughness (G(IC)) and other mechanical properties at room and elevated temperatures, the influences of formulated molecular weight on the temperature resistance and mechanical properties of PTI-based composites are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal and mechanical properties of phenolphthalein polyethersulfone/poly(phenylene sulfide) (PES-C/PPS) blends were studied using a differential scanning calorimeter, a dynamic mechanical analyzer, and mechanical characterization. The morphologies of fracture surfaces were observed by scanning electron microscopy. The blends are multiphase systems with strong interaction between the two phases. It is of interest that, although the strength and ductility of PPS are lower than those of PES-C, the addition of PPS can improve markedly the impact strength of PES-C without changing its higher strength. The PPS can also act as a flow aid for PES-C. (C) 1995 John Wiley and Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea urchin Paracentrotus lividus. To assess skeletal mechanical properties, we characterized the fracture force, Young's modulus, second moment of area, material nanohardness, and specific Young's modulus of sea urchin test plates. None of these parameters were significantly affected by low pH and/or increased temperature in the laboratory experiment and by low pH only in the individuals chronically exposed to lowered pH from the CO2 seeps. In tidal pools, the fracture force was higher and the Young's modulus lower in ambital plates of individuals from the rock pool characterized by the largest pH variations but also a dominance of calcifying algae, which might explain some of the variation. Thus, decreases of pH to levels expected for 2100 did not directly alter the mechanical properties of the test of P. lividus. Since the maintenance of test integrity is a question of survival for sea urchins and since weakened tests would increase the sea urchins' risk of predation, our findings indicate that the decreasing seawater pH and increasing seawater temperature expected for the end of the century should not represent an immediate threat to sea urchins vulnerability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, ceria-yttria co-stabilized zirconia (CYSZ) free-standing coatings, deposited by air plasma spraying (APS), were isothermally annealed at 1315 °C in order to explore the effect of sintering on the microstructure and the mechanical properties (i.e., hardness and Young's modulus). To this aim, coating microstructure, before and after heat treatment, was analyzed using scanning electron microscopy, and image analysis was carried out in order to estimate porosity fraction. Moreover, Vickers microindentation and depth-sensing nanoindentation tests were performed in order to study the evolution of hardness and Young's modulus as a function of annealing time. The results showed that thermal aging of CYSZ coatings leads to noticeable microstructural modifications. Indeed, the healing of finer pores, interlamellar, and intralamellar microcracks was observed. In particular, the porosity fraction decreased from ~10 to ~5% after 50 h at 1315 °C. However, the X-ray diffraction analyses revealed that high phase stability was achieved, as no phase decomposition occurred after thermal aging. In turn, both the hardness and Young's modulus increased, in particular, the increase in stiffness (with respect to "as produced" samples) was equal to ~25%, whereas the hardness increased to up to ~60%. © 2010 Springer Science+Business Media, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Fe-8.46%Mn-0.24%Nb-0.038%C (wt.%) manganese steel was investigated. The steel has a 100% bcc structure after heat treatment at 850°C for 1.5 h, water quenching or air cooling. Martensite interlocked microstructure consisting of fine martensite plates/needles with different spatial orientations was found. Austenite forms, in small amounts, after a 600°C reheating treatment. Scanning electron microscopy images and energy dispersive spectrometry of the fracture surfaces revealed both ductile and brittle types of failure and precipitates. Deep quenching after the heat treatments does not change the phase composition or the hardness. NbC is formed in the steel, in high number densities. It plays a role in the impact fracture process, by acting as void nucleation sites, facilitating ductile fracture with dimples appearing on the fracture surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructural evolution during short-term (up to 3000 hours) thermal exposure of three 9/12Cr heat-resistant steels was studied, as well as the mechanical properties after exposure. The tempered martensitic lath structure, as well as the precipitation of carbide and MX type carbonitrides in the steel matrix, was stable after 3000 hours of exposure at 873 K (600 °C). A microstructure observation showed that during the short-term thermal exposure process, the change of mechanical properties was caused mainly by the formation and growth of Laves-phase precipitates in the steels. On thermal exposure, with an increase of cobalt and tungsten contents, cobalt could promote the segregation of tungsten along the martensite lath to form Laves phase, and a large size and high density of Laves-phase precipitates along the grain boundaries could lead to the brittle intergranular fracture of the steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag–26.5Cu–3Ti and Ag–34.5Cu–1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 °C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag–26.5Cu–3Ti brazing alloy and a brazing temperature of 850 °C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag–34.5Cu–1.5Ti brazing alloy and a brazing temperature of 850 °C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm−2. Nevertheless, the joints produced at 850 °C using a Ag–26.5Cu–3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm−2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovagal baroreflex sensitivity (cvBRS) demonstrates a strong relationship with arterial mechanical properties. Both cvBRS and arterial mechanics differ by sex such that males demonstrate greater cvBRS, yet lower large artery elasticity than females. Whether the relationship between cvBRS and arterial mechanics is similar in males and females remains unexamined. As a result, it is unclear whether arterial mechanics contribute to sex differences in cvBRS. This study investigated the cross-sectional relationship between cvBRS and arterial mechanical properties of the common carotid, carotid sinus and aortic arch (AA) in 36 (18 females) young, healthy normotensives. The cvBRS-arterial mechanics relationship did not reach statistical significance and did not differ by sex. Both cvBRS and AA distensibility were greater in females than males. Sex differences in cvBRS were eliminated after controlling for AA distensibility. These findings suggest that in this sample, AA elasticity may contribute to the greater cvBRS in females than males.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latex waste products contain rubber hydrocarbon of very high quality, which is only lightly cross linked. Selected wastes such as thread waste and glove waste were modified into processable materials by a novel economic process and thermoplastic elastomers were prepared by blending these modified waste materials with high density polyethylene in various proportions. The mechanical properties as well as the rheological behaviour of these blends were evaluated and compared with those of the natural rubber-high density polyethylene blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of various processing parameters, such as nip gap, friction ratio and roll temperature, on the tensile properties of short Kevlar aramid fibre-thermoplastic polyurethane composite has been investigated and the tensile and tear fracture surfaces have been characterised using a scanning electron microscope. A nip gap of 0.45 mm, a friction ratio of 1.15 and a roll temperature of 62°C was found to give optimum mechanical properties. Scanning electron microscopy study revealed a higher extent of fibre orientation in the milling direction in the above condition.