123 resultados para AUTOPHOSPHORYLATION
Resumo:
Atrophy of skeletal muscle is due to a depression in protein synthesis and an increase in degradation. Studies in vitro have suggested that activation of the dsRNA-dependent protein kinase (PKR) may be responsible for these changes in protein synthesis and degradation. In order to evaluate whether this is also applicable to cancer cachexia the action of a PKR inhibitor on the development of cachexia has been studied in mice bearing the MAC16 tumour. Treatment of animals with the PKR inhibitor (5 mg kg-1) significantly reduced levels of phospho-PKR in muscle down to that found in non-tumour-bearing mice, and effectively attenuated the depression of body weight, with increased muscle mass, and also inhibited tumour growth. There was an increase in protein synthesis in skeletal muscle, which paralleled a decrease in eukaryotic initiation factor 2α phosphorylation. Protein degradation rates in skeletal muscle were also significantly decreased, as was proteasome activity levels and expression. Myosin levels were increased up to values found in non-tumour-bearing animals. Proteasome expression correlated with a decreased nuclear accumulation of nuclear factor-κB (NF-κB). The PKR inhibitor also significantly inhibited tumour growth, although this appeared to be a separate event from the effect on muscle wasting. These results suggest that inhibition of the autophosphorylation of PKR may represent an appropriate target for the attenuation of muscle atrophy in cancer cachexia. © 2007 Cancer Research UK.
Resumo:
d-Myo-inositol 1,2,6-triphosphate (alpha trinositol, AT) has been shown to attenuate muscle atrophy in a murine cachexia model through an increase in protein synthesis and a decrease in degradation. The mechanism of this effect has been investigated in murine myotubes using a range of catabolic stimuli, including proteolysis-inducing factor (PIF), angiotensin II (Ang II), lipopolysaccharide, and tumor necrosis factor-α/interferon-γ. At a concentration of 100 μM AT was found to attenuate both the induction of protein degradation and depression of protein synthesis in response to all stimuli. The effect on protein degradation was accompanied by attenuation of the increased expression and activity of the ubiquitin-proteasome pathway. This suggests that AT inhibits a signalling step common to all four agents. This target has been shown to be activation (autophosphorylation) of the dsRNA-dependent protein kinase (PKR) and the subsequent phosphorylation of eukaryotic initiation factor 2 on the α-subunit, together with downstream signalling pathways leading to protein degradation. AT also inhibited activation of caspase-3/-8, which is thought to lead to activation of PKR. The mechanism of this effect may be related to the ability of AT to chelate divalent metal ions, since the attenuation of the increased activity of the ubiquitin-proteasome pathway by PIF and Ang II, as well as the depression of protein synthesis by PIF, were reversed by increasing concentrations of Zn2+. The ability of AT to attenuate muscle atrophy by a range of stimuli suggests that it may be effective in several catabolic conditions. © 2009 Elsevier Inc. All rights reserved.
Resumo:
The Tribbles Homologues are a family of three eukaryotic pseudokinases (Trb1, Trb2, Trb3) that act as allosteric inhibitors and regulatory scaffold sites in pathways governing adipogenesis, cell proliferation and insulin signaling. The Tribbles Homologues have the same overall tertiary structure of the eukaryotic protein kinase domain, but lack multiple residues necessary to catalysis in the nucleotide-binding P-loop and the Mg2+-coordinating DFG motif. Trb1 has been shown conclusively to be incapable of binding ATP, whereas a recent study presents evidence that Trb2 autophosphorylates independently of Mg2+ in vitro. This finding is surprising given the high degree of sequence similarity between the two proteins (71%), and suggests unique nucleotide binding and phosphotransfer mechanisms. The goal of this project was to investigate whether Trb2 possesses kinase activity or not and determine its structural basis. A method for the high-yield recombinant expression and purification of stable Trb2 was developed. Trb2 nucleotide binding and autophosphorylation could not be detected across multiple experimental approaches, including thermal shift assays, MANT-ATP fluorescence, radiolabeled phosphate incorporation, and nonspecific ATPase activity assays. Further characterization also revealed that Trb2 forms homomultimers with possible functional consequences, and extensive crystallization screening has yielded multiple promising conditions that could produce diffraction-quality crystals with further optimization. This project explores the difficulties in functionally characterizing putatively active pseudokinases, and proposes a structural basis for the conserved pseudokinase features of the Tribbles homologues.