129 resultados para AUTOPHOSPHORYLATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the mechanism by which beta-hydroxy-beta-methylbutyrate (HMB) attenuates the depression of protein synthesis in the skeletal muscle of cachectic mice, a study has been carried out in murine myotubes in the presence of proteolysis-inducing factor (PIF). PIF inhibited protein synthesis by 50% within 4 h, and this was effectively attenuated by HMB (25-50 muM). HMB (50 muM) alone stimulated protein synthesis, and this was attenuated by rapamycin (27 nM), an inhibitor of mammalian target of rapamycin (mTOR). Further evidence for an involvement of this pathway was shown by an increased phosphorylation of mTOR, the 70-kDa ribosomal S6 kinase (p70(S6k)), and initiation factor 4E-binding protein (4E-BP1) and an increased association of eukaryotic initiation factor 2 (eIF4E) with eIF4G. PIF alone induced a transient (1-2 h) stimulation of phosphorylation of mTOR and p70(S6k). However, in the presence of HMB, phosphorylation of mTOR, p70(S6k), and 4E-BP1 was increased, and inactive 4E-BP1-eIF4E complex was reduced, whereas the active eIF4G.eIF4E complex was increased, suggesting continual stimulation of protein synthesis. HMB alone reduced phosphorylation of elongation factor 2, but this effect was not seen in the presence of PIF. PIF induced autophosphorylation of the double-strand RNA-dependent protein kinase (PKR), leading to phosphorylation of eIF2 on the alpha-subunit, which would inhibit protein synthesis. However, in the presence of HMB, phosphorylation of PKR and eIF2alpha was attenuated, and this was also observed in skeletal muscle of cachectic mice administered HMB (0.25 g/kg). These results suggest that HMB attenuates the depression of protein synthesis by PIF in myotubes through multiple mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both proteolysis-inducing factor (PIF) and angiotensin II have been shown to produce a depression in protein synthesis in murine myotubes concomitant with an increased phosphorylation of eukaryotic initiation factor 2 (eIF2α). Both PIF and angiotensin II were shown to induce autophosphorylation of the RNA-dependent protein kinase (PKR), and an inhibitor of this enzyme completely attenuated the depression in protein synthesis and prevented the induction of eIF2α phosphorylation. The PKR inhibitor also completely attenuated the increase in protein degradation induced by PIF and angiotensin II and prevented the increase in proteasome expression and activity. To confirm these results myotubes were transfected with plasmids that express either wild-type PKR, or a catalytically inactive PKR variant, PKRΔ6. Myotubes expressing PKRΔ6 showed no increase in eIF2α phosphorylation in response to PIF or angiotensin II, no depression in protein synthesis, and no increase in protein degradation or increase in proteasome expression. Induction of the ubiquitin-proteasome pathway by PIF and angiotensin II has been linked to activation of the transcription factor nuclear factor-κB (NF-κB). Inhibition of PKR prevented nuclear migration of NF-κB in response to both PIF and angiotensin II, by preventing degradation of the inhibitor protein I-κB. Phosphorylation of PKR and eIF2α was also significantly increased in the gastrocnemius muscle of weight losing mice bearing the MAC16 tumor, suggesting that a similar process may be operative in cancer cachexia. These results provide a link between the depression of protein synthesis in skeletal muscle and the increase in protein degradation. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To determine the effectiveness of the polyanionic, metal binding agent D-myo-inositol-1,2,6-triphosphate (alpha trinositol, AT), and its hexanoyl ester (HAT), in tissue wasting in cancer cachexia. METHODS: The anti-cachexic effect was evaluated in the MAC16 tumour model. RESULTS: Both AT and HAT attenuated the loss of body weight through an increase in the nonfat carcass mass due to an increase in protein synthesis and a decrease in protein degradation in skeletal muscle. The decrease in protein degradation was associated with a decrease in activity of the ubiquitin-proteasome proteolytic pathway and caspase-3 and -8. Protein synthesis was increased due to attenuation of the elevated autophosphorylation of double-stranded RNA-dependent protein kinase, and of eukaryotic initiation factor 2alpha together with hyperphosphorylation of eIF4E-binding protein 1 and decreased phosphorylation of eukaryotic elongation factor 2. In vitro, AT completely attenuated the protein degradation in murine myotubes induced by both proteolysis-inducing factor and angiotensin II. CONCLUSION: These results show that AT is a novel therapeutic agent with the potential to alleviate muscle wasting in cancer patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteolysis-inducing factor (PIF), a tumour-produced cachectic factor, induced a dose-dependent decrease in protein synthesis in murine myotubes, together with an increase in phosphorylation of eucaryotic initiation factor 2 (eIF2) on the alpha-subunit. Both insulin (1 nM) and insulin-like growth factor I (IGF-I) (13.2 nM) attenuated the depression of protein synthesis by PIF and the increased phosphorylation of eIF2alpha, by inhibiting the activation (autophosphorylation) of the dsRNA-dependent protein kinase (PKR) by induction of protein phosphatase 1. A low-molecular weight inhibitor of PKR also reversed the depression of protein synthesis by PIF to the same extent, as did insulin and IGF-I. Both insulin and IGF-I-stimulated protein synthesis in the presence of PIF, and this was attenuated by Salubrinal, an inhibitor of phospho eIF2alpha phosphatase, suggesting that at least part of this action was due to their ability to inhibit phosphorylation of eIF2alpha. Both insulin and IGF-I also attenuated the induction of protein degradation in myotubes induced by PIF, this effect was also attenuated by Salubrinal. These results suggest an alternative mechanism involving PKR to explain the effect of insulin and IGF-I on protein synthesis and degradation in skeletal muscle in the presence of catabolic factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment of murine myotubes with high glucose concentrations (10 and 25 mM) stimulated protein degradation through the ubiquitin–proteasome pathway, and also caused activation (autophosphorylation) of PKR (double-stranded-RNA-dependent protein kinase) and eIF2a (eukaryotic initiation factor 2a). Phosphorylation of PKR and eIF2a was also seen in the gastrocnemius muscle of diabetic ob/ob mice. High glucose levels also inhibited protein synthesis. The effect of glucose on protein synthesis and degradation was not seen in myotubes transfected with a catalytically inactive variant (PKR?6). High glucose also induced an increased activity of both caspase-3 and -8, which led to activation of PKR, since this was completely attenuated by the specific caspase inhibitors. Activation of PKR also led to activation of p38MAPK (mitogen activated protein kinase), leading to ROS (reactive oxygen species) formation, since this was attenuated by the specific p38MAPK inhibitor SB203580. ROS formation was important in protein degradation, since it was completely attenuated by the antioxidant butylated hydroxytoluene. These results suggest that high glucose induces muscle atrophy through the caspase-3/-8 induced activation of PKR, leading to phosphorylation of eIF2a and depression of protein synthesis, together with PKR-mediated ROS production, through p38MAPK and increased protein degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of Ca2+ in the activation of PKR (double-stranded-RNA-dependent protein kinase), which leads to skeletal muscle atrophy, has been investigated in murine myotubes using the cell-permeable Ca2+ chelator BAPTA/AM (1,2-bis (o-aminphenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester). BAPTA/AM effectively attenuated both the increase in total protein degradation, through the ubiquitin–proteasome pathway, and the depression of protein synthesis, induced by both proteolysis-inducing factor (PIF) and angiotensin II (Ang  II). Since both protein synthesis and degradation were attenuated this suggests the involvement of PKR. Indeed BAPTA/AM attenuated both the activation  (autophosphorylation) of PKR and the subsequent phosphorylation of eIF2a (eukaryotic initiation factor 2a) in the presence of PIF, suggesting the involvement of Ca2+ in this process. PIF also induced an increase in the activity of both caspases-3 and -8, which was attenuated by BAPTA/AM. The increase in caspase-3 and -8 activity was shown to be responsible for the activation of PKR, since the latter was completely attenuated by the specific caspase-3 and -8 inhibitors. These results suggest that Ca2+ is involved in the increase in protein degradation and decrease in protein synthesis by PIF and Ang II through activation of PKR by caspases-3 and -8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atrophy of skeletal muscle is due to a depression in protein synthesis and an increase in degradation. Studies in vitro have suggested that activation of the dsRNA-dependent protein kinase (PKR) may be responsible for these changes in protein synthesis and degradation. In order to evaluate whether this is also applicable to cancer cachexia the action of a PKR inhibitor on the development of cachexia has been studied in mice bearing the MAC16 tumour. Treatment of animals with the PKR inhibitor (5 mg kg-1) significantly reduced levels of phospho-PKR in muscle down to that found in non-tumour-bearing mice, and effectively attenuated the depression of body weight, with increased muscle mass, and also inhibited tumour growth. There was an increase in protein synthesis in skeletal muscle, which paralleled a decrease in eukaryotic initiation factor 2α phosphorylation. Protein degradation rates in skeletal muscle were also significantly decreased, as was proteasome activity levels and expression. Myosin levels were increased up to values found in non-tumour-bearing animals. Proteasome expression correlated with a decreased nuclear accumulation of nuclear factor-κB (NF-κB). The PKR inhibitor also significantly inhibited tumour growth, although this appeared to be a separate event from the effect on muscle wasting. These results suggest that inhibition of the autophosphorylation of PKR may represent an appropriate target for the attenuation of muscle atrophy in cancer cachexia. © 2007 Cancer Research UK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

d-Myo-inositol 1,2,6-triphosphate (alpha trinositol, AT) has been shown to attenuate muscle atrophy in a murine cachexia model through an increase in protein synthesis and a decrease in degradation. The mechanism of this effect has been investigated in murine myotubes using a range of catabolic stimuli, including proteolysis-inducing factor (PIF), angiotensin II (Ang II), lipopolysaccharide, and tumor necrosis factor-α/interferon-γ. At a concentration of 100 μM AT was found to attenuate both the induction of protein degradation and depression of protein synthesis in response to all stimuli. The effect on protein degradation was accompanied by attenuation of the increased expression and activity of the ubiquitin-proteasome pathway. This suggests that AT inhibits a signalling step common to all four agents. This target has been shown to be activation (autophosphorylation) of the dsRNA-dependent protein kinase (PKR) and the subsequent phosphorylation of eukaryotic initiation factor 2 on the α-subunit, together with downstream signalling pathways leading to protein degradation. AT also inhibited activation of caspase-3/-8, which is thought to lead to activation of PKR. The mechanism of this effect may be related to the ability of AT to chelate divalent metal ions, since the attenuation of the increased activity of the ubiquitin-proteasome pathway by PIF and Ang II, as well as the depression of protein synthesis by PIF, were reversed by increasing concentrations of Zn2+. The ability of AT to attenuate muscle atrophy by a range of stimuli suggests that it may be effective in several catabolic conditions. © 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tribbles Homologues are a family of three eukaryotic pseudokinases (Trb1, Trb2, Trb3) that act as allosteric inhibitors and regulatory scaffold sites in pathways governing adipogenesis, cell proliferation and insulin signaling. The Tribbles Homologues have the same overall tertiary structure of the eukaryotic protein kinase domain, but lack multiple residues necessary to catalysis in the nucleotide-binding P-loop and the Mg2+-coordinating DFG motif. Trb1 has been shown conclusively to be incapable of binding ATP, whereas a recent study presents evidence that Trb2 autophosphorylates independently of Mg2+ in vitro. This finding is surprising given the high degree of sequence similarity between the two proteins (71%), and suggests unique nucleotide binding and phosphotransfer mechanisms. The goal of this project was to investigate whether Trb2 possesses kinase activity or not and determine its structural basis. A method for the high-yield recombinant expression and purification of stable Trb2 was developed. Trb2 nucleotide binding and autophosphorylation could not be detected across multiple experimental approaches, including thermal shift assays, MANT-ATP fluorescence, radiolabeled phosphate incorporation, and nonspecific ATPase activity assays. Further characterization also revealed that Trb2 forms homomultimers with possible functional consequences, and extensive crystallization screening has yielded multiple promising conditions that could produce diffraction-quality crystals with further optimization. This project explores the difficulties in functionally characterizing putatively active pseudokinases, and proposes a structural basis for the conserved pseudokinase features of the Tribbles homologues.