955 resultados para APPLIED LOAD
Resumo:
Gemstone Team ANTIDOTE
Resumo:
Nowadays multi-touch devices (MTD) can be found in all kind of contexts. In the learning context, MTD availability leads many teachers to use them in their class room, to support the use of the devices by students, or to assume that it will enhance the learning processes. Despite the raising interest for MTD, few researches studying the impact in term of performance or the suitability of the technology for the learning context exist. However, even if the use of touch-sensitive screens rather than a mouse and keyboard seems to be the easiest and fastest way to realize common learning tasks (as for instance web surfing behaviour), we notice that the use of MTD may lead to a less favourable outcome. The complexity to generate an accurate fingers gesture and the split attention it requires (multi-tasking effect) make the use of gestures to interact with a touch-sensitive screen more difficult compared to the traditional laptop use. More precisely, it is hypothesized that efficacy and efficiency decreases, as well as the available cognitive resources making the users’ task engagement more difficult. Furthermore, the presented study takes into account the moderator effect of previous experiences with MTD. Two key factors of technology adoption theories were included in the study: familiarity and self-efficacy with the technology.Sixty university students, invited to a usability lab, are asked to perform information search tasks on an online encyclopaedia. The different tasks were created in order to execute the most commonly used mouse actions (e.g. right click, left click, scrolling, zooming, key words encoding…). Two different conditions were created: (1) MTD use and (2) laptop use (with keyboard and mouse). The cognitive load, self-efficacy, familiarity and task engagement scales were adapted to the MTD context. Furthermore, the eye-tracking measurement would offer additional information about user behaviours and their cognitive load.Our study aims to clarify some important aspects towards the usage of MTD and the added value compared to a laptop in a student learning context. More precisely, the outcomes will enhance the suitability of MTD with the processes at stakes, the role of previous knowledge in the adoption process, as well as some interesting insights into the user experience with such devices.
Resumo:
The DRAMA library, developed within the European Commission funded (ESPRIT) project DRAMA, supports dynamic load-balancing for parallel (message-passing) mesh-based applications. The target applications are those with dynamic and solution-adaptive features. The focus within the DRAMA project was on finite element simulation codes for structural mechanics. An introduction to the DRAMA library will illustrate that the very general cost model and the interface designed specifically for application requirements provide simplified and effective access to a range of parallel partitioners. The main body of the paper will demonstrate the ability to provide dynamic load-balancing for parallel FEM problems that include: adaptive meshing, re-meshing, the need for multi-phase partitioning.
Resumo:
This paper presents a proactive approach to load sharing and describes the architecture of a scheme, Concert, based on this approach. A proactive approach is characterized by a shift of emphasis from reacting to load imbalance to avoiding its occurrence. In contrast, in a reactive load sharing scheme, activity is triggered when a processing node is either overloaded or underloaded. The main drawback of this approach is that a load imbalance is allowed to develop before costly corrective action is taken. Concert is a load sharing scheme for loosely-coupled distributed systems. Under this scheme, load and task behaviour information is collected and cached in advance of when it is needed. Concert uses Linux as a platform for development. Implemented partially in kernel space and partially in user space, it achieves transparency to users and applications whilst keeping the extent of kernel modifications to a minimum. Non-preemptive task transfers are used exclusively, motivated by lower complexity, lower overheads and faster transfers. The goal is to minimize the average response-time of tasks. Concert is compared with other schemes by considering the level of transparency it provides with respect to users, tasks and the underlying operating system.
Resumo:
Artificial neural networks (ANNs) can be easily applied to short-term load forecasting (STLF) models for electric power distribution applications. However, they are not typically used in medium and long term load forecasting (MLTLF) electric power models because of the difficulties associated with collecting and processing the necessary data. Virtual instrument (VI) techniques can be applied to electric power load forecasting but this is rarely reported in the literature. In this paper, we investigate the modelling and design of a VI for short, medium and long term load forecasting using ANNs. Three ANN models were built for STLF of electric power. These networks were trained using historical load data and also considering weather data which is known to have a significant affect of the use of electric power (such as wind speed, precipitation, atmospheric pressure, temperature and humidity). In order to do this a V-shape temperature processing model is proposed. With regards MLTLF, a model was developed using radial basis function neural networks (RBFNN). Results indicate that the forecasting model based on the RBFNN has a high accuracy and stability. Finally, a virtual load forecaster which integrates the VI and the RBFNN is presented.
Resumo:
Computational modelling is becoming ever more important for obtaining regulatory approval for new medical devices. An accepted approach is to infer performance in a population from an analysis conducted for an idealised or ‘average’ patient; we present here a method for predicting the performance of an orthopaedic implant when released into a population—effectively simulating a clinical trial. Specifically we hypothesise that an analysis based on a method for predicting the performance in a population will lead to different conclusions than an analysis based on an idealised or ‘average’ patient. To test this hypothesis we use a finite element model of an intramedullary implant in a bone whose size and remodelling activity is different for each individual in the population. We compare the performance of a low Young’s modulus implant (View the MathML source) to one with a higher Young’s modulus (200 GPa). Cyclic loading is applied and failure is assumed when the migration of the implant relative to the bone exceeds a threshold magnitude. The analysis for an idealised of ‘average’ patient predicts that the lower modulus device survives longer whereas the analysis simulating a clinical trial predicts no statistically-significant tendency (p=0.77) for the low modulus device to perform better. It is concluded that population-based simulations of implant performance–simulating a clinical trial–present a very valuable opportunity for more realistic computational pre-clinical testing of medical devices.
Resumo:
The finite element method in conjunction with the Soutis-Fleck model is used to predict the residual strength after impact of a carbon-fibre reinforced plastic wingbox subjected to a cantilever type loading. The maximum stress failure criterion further validates the Soutis-Fleck model predictions. The Soutis-Fleck model predicts that the wingbox fails at a tip load of 99.2 kN, approximately 5.5% less than the experimental observation
Resumo:
While load flow conditions vary with different loads, the small-signal stability of the entire system is closely related with to the locations, capacities and models of loads. In this paper, load impacts with different capacities and models on the small-signal stability are analysed. In the real large-scale power system case, the load sensitivity which denotes the sensitivity of the eigenvalue with respect to the load active power is introduced and applied to rank the loads. The loads with high sensitivity are also considered.
Resumo:
Endometrial cancer risk has been directly associated with glycemic load. However, few studies have investigated this link, and the etiological role of specific dietary carbohydrate components remains unclear. Our aim was to investigate associations of carbohydrate intake, glycemic index, and glycemic load with endometrial cancer risk in the US Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Recruitment took place in 1993-2001. Over a median of 9.0 years of follow-up through 2009, 386 women developed endometrial cancer among 36,115 considered in the analysis. Dietary intakes were assessed using a 124-item diet history questionnaire. Cox proportional hazards models were applied to calculate hazard ratios and 95% confidence intervals. Significant inverse associations were detected between endometrial cancer risk and total available carbohydrate intake (hazard ratio (HR) = 0.66, 95% confidence interval (CI): 0.49, 0.90), total sugars intake (HR = 0.71, 95% CI: 0.52, 0.96), and glycemic load (HR = 0.63, 95% CI: 0.46, 0.84) when women in the highest quartile of intake were compared with those in the lowest. These inverse associations were strongest among overweight and obese women. No associations with endometrial cancer risk were observed for glycemic index or dietary fiber. Our findings contrast with previous evidence and suggest that high carbohydrate intakes and glycemic loads are protective against endometrial cancer development. Further clarification of these associations is warranted.
Resumo:
The impact of urban waste-water and non-point nitrate discharges in estuarine and near-shore coastal waters are analyzed. The study is focused on the effects of applying the European directives 91/271/EEC and 91/676/EEC to these systems. 4 Portuguese estuaries and two coastal lagoons with different characteristics are studied. A modelling system is applied and calibrated in each system. Three nitrate load scenarios are examined. It is shown that the morphologic and hydrodynamic characteristics of the domain largely control the ecological processes in these systems. The primary production limitation factors are split into “biologic” and “hydrodynamic” components. The physical limitation due to hydrodynamic and residence time is the most important factor. The combined limitation of “biologic” factors (temperature, light and nutrients availability) control productivity only in the systems where physical limitation is not important.
Resumo:
In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.
Resumo:
A supervisory control and data acquisition (SCADA) system is an integrated platform that incorporates several components and it has been applied in the field of power systems and several engineering applications to monitor, operate and control a lot of processes. In the future electrical networks, SCADA systems are essential for an intelligent management of resources like distributed generation and demand response, implemented in the smart grid context. This paper presents a SCADA system for a typical residential house. The application is implemented on MOVICON™11 software. The main objective is to manage the residential consumption, reducing or curtailing loads to keep the power consumption in or below a specified setpoint, imposed by the costumer and the generation availability.
Resumo:
The elastic behavior of the demand consumption jointly used with other available resources such as distributed generation (DG) can play a crucial role for the success of smart grids. The intensive use of Distributed Energy Resources (DER) and the technical and contractual constraints result in large-scale non linear optimization problems that require computational intelligence methods to be solved. This paper proposes a Particle Swarm Optimization (PSO) based methodology to support the minimization of the operation costs of a virtual power player that manages the resources in a distribution network and the network itself. Resources include the DER available in the considered time period and the energy that can be bought from external energy suppliers. Network constraints are considered. The proposed approach uses Gaussian mutation of the strategic parameters and contextual self-parameterization of the maximum and minimum particle velocities. The case study considers a real 937 bus distribution network, with 20310 consumers and 548 distributed generators. The obtained solutions are compared with a deterministic approach and with PSO without mutation and Evolutionary PSO, both using self-parameterization.
Resumo:
Load forecasting has gradually becoming a major field of research in electricity industry. Therefore, Load forecasting is extremely important for the electric sector under deregulated environment as it provides a useful support to the power system management. Accurate power load forecasting models are required to the operation and planning of a utility company, and they have received increasing attention from researches of this field study. Many mathematical methods have been developed for load forecasting. This work aims to develop and implement a load forecasting method for short-term load forecasting (STLF), based on Holt-Winters exponential smoothing and an artificial neural network (ANN). One of the main contributions of this paper is the application of Holt-Winters exponential smoothing approach to the forecasting problem and, as an evaluation of the past forecasting work, data mining techniques are also applied to short-term Load forecasting. Both ANN and Holt-Winters exponential smoothing approaches are compared and evaluated.
Resumo:
The study reported presents the findings relating to commercial growing of genetically-modified Bt cotton in South Africa by a large sample of smallholder farmers over three seasons (1998/99, 1999/2000, 2000/01) following adoption. The analysis presents constructs and compares groupwise differences for key variables in Bt v. non-Bt technology and uses regressions to further analyse the production and profit impacts of Bt adoption. Analysis of the distribution of benefits between farmers due to the technology is also presented. In parallel with these socio-economic measures, the toxic loads being presented to the environment following the introduction of Bt cotton are monitored in terms of insecticide active ingredient (ai) and the Biocide Index. The latter adjusts ai to allow for differing persistence and toxicity of insecticides. Results show substantial and significant financial benefits to smallholder cotton growers of adopting Bt cotton over three seasons in terms of increased yields, lower insecticide spray costs and higher gross margins. This includes one particularly wet, poor growing season. In addition, those with the smaller holdings appeared to benefit proportionately more from the technology (in terms of higher gross margins) than those with larger holdings. Analysis using the Gini-coefficient suggests that the Bt technology has helped to reduce inequality amongst smallholder cotton growers in Makhathini compared to what may have been the position if they had grown conventional cotton. However, while Bt growers applied lower amounts of insecticide and had lower Biocide Indices (per ha) than growers of non-Bt cotton, some of this advantage was due to a reduction in non-bollworm insecticide. Indeed, the Biocide Index for all farmers in the population actually increased with the introduction of Bt cotton. The results indicate the complexity of such studies on the socio-economic and environmental impacts of GM varieties in the developing world.