929 resultados para AMPLIFIER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-finger structure power SiGe HBT device (with an emitter area of about 166μm^2) is fabricated with very simple 2μm double-mesa technology. The DC current gain β is 144.25. The B-C junction breakdown voltage reaches 9V with a collector doping concentration of 1 × 10^17cm^-3 and a collector thickness of 400nm. Though our data are influenced by large additional RF probe pads, the device exhibits a maximum oscillation frequency fmax of 10.1GHz and a cut-off frequency fτ of 1.8GHz at a DC bias point of IC=10mA and VCE = 2.5V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flash-lamp-pumped Nd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semiconductor optical amplifier and electroabsorption modulator monolithically integrated with a spotsize converter input and output is fabricated by means of selective area growth,quantum well intermixing,and asymmetric twin waveguide technology. A 1550-1600nm lossless operation with a high DC extinction ratio of 25dB and more than 10GHz 3dB bandwidth are successfully achieved. The output beam divergence angles of the device in the horizontal and vertical directions are as small as 7.3°× 18.0°, respectively, resulting in a 3.0dB coupling loss with a cleaved single-mode optical fiber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semiconductor optical amplifier gate based on tensile-strained quasi-bulk InGaAs is developed. At injection current of 80mA,a 3dB optical bandwidth of more than 85nm is achieved due to dominant band-filling effect.Moreover, the most important is that very low polarization dependence of gain (<0. 7dB),fiber-to-fiber lossless operation current (70~90mA) and a high extinction ratio (>50dB) are simultaneously obtained over this wide 3dB optical bandwidth (1520~1609nm) which nearly covers the spectral region of the whole C band (1525~1565nm)and the whole L band (1570~ 1610nm). The gating time is also improved by decreasing carrier lifetime. The wideband polarization-insensitive SOA-gate is promising for use in future dense wavelength division multiplexing (DWDM) communication systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theoretical optimization of tensile strained InGaAsP/InGaAsP MQW for 1.5μm window polarization-independent semiconductor optical amplifier is reported. The valence-band structure of the MQw is calculated by using K·P method, in which 6×6 Luttinger effective-mass Hamiltonian is taken into account. LThe polarization dependent optical gain is calculated with various well width, strain, and carrier density.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach to achieving a polarization-insensitive semiconductor optical amplifier is presented. The active layer consists of graded tensile strained bulk-like structure. which can not only enhance TM mode material gain and further realize polarization-insensitivity, but also get a large 3dB bandwidth due to different strain introduced into the active layer. 3dB bandwidth more than 40nm. 65nm has been obtained in die experiment and theory, respectively. The characteristics of such polarization insensitive structure have been analyzed, The influence of the amount of strain and of the thickness of strain layer on the polarization insensitivity has been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slow-light effects in photonic crystal (PC) waveguides can enhance light-mater interaction near the photonic band edge, which can be used to design a short cavity length semiconductor optical amplifier (SOA). In this paper, a novel SOA based on slow-light effects in PC waveguides (PCSOA) is presented. To realize the amplification of the optical signal with polarization independence, a PCSOA is designed with a compensated structure. The cascaded structure leads to a balanced amplification to the TE and TM polarized light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a simple approach to generate a high quality 10 GHz 1.9 ps optical pulse train using a semiconductor optical amplifier and silica-based highly nonlinear fiber. An optical pulse generator based on our proposed scheme is easy to set up with commercially available optical components. A 10 GHz, 1.9 ps optical pulse train is obtained with timing jitter as low as 60 fs over the frequency range 10 Hz-1 MHz. With a wavelength tunable CW laser, a wide wavelength tunable span can be achieved over the entire C band. The proposed optical pulse generator also can operate at different repetition rates from 3 to 10 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel system design that can generate the optimized wavelength-tunable optical pulse streams from an uncooled gain-switched Fabry-Perot semiconductor laser using an optical amplifier as external light source. The timing jitter of gain-switched laser has been reduced from about 3 ps to 600 fs and the pulse width has been optimized by using our system. The stability of the system was also experimentally investigated. Our results show that an uncooled gain-switched FP laser system can feasibly produce the stable optical pulse trains with pulse width of 18 ps at the repetition frequency of 5 GHz during 7 h continuous working. We respectively proved the system feasibility under 1 GHz, 2.5 GHz and 5 GHz operation. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical circuit designers seldom create really new topologies or use old ones in a novel way. Most designs are known combinations of common configurations tailored for the particular problem at hand. In this thesis I show that much of the behavior of a designer engaged in such ordinary design can be modelled by a clearly defined computational mechanism executing a set of stylized rules. Each of my rules embodies a particular piece of the designer's knowledge. A circuit is represented as a hierarchy of abstract objects, each of which is composed of other objects. The leaves of this tree represent the physical devices from which physical circuits are fabricated. By analogy with context-free languages, a class of circuits is generated by a phrase-structure grammar of which each rule describes how one type of abstract object can be expanded into a combination of more concrete parts. Circuits are designed by first postulating an abstract object which meets the particular design requirements. This object is then expanded into a concrete circuit by successive refinement using rules of my grammar. There are in general many rules which can be used to expand a given abstract component. Analysis must be done at each level of the expansion to constrain the search to a reasonable set. Thus the rule of my circuit grammar provide constraints which allow the approximate qualitative analysis of partially instantiated circuits. Later, more careful analysis in terms of more concrete components may lead to the rejection of a line of expansion which at first looked promising. I provide special failure rules to direct the repair in this case.