971 resultados para ALS data-set
Resumo:
ABSTRACT The spatial distribution of forest biomass in the Amazon is heterogeneous with a temporal and spatial variation, especially in relation to the different vegetation types of this biome. Biomass estimated in this region varies significantly depending on the applied approach and the data set used for modeling it. In this context, this study aimed to evaluate three different geostatistical techniques to estimate the spatial distribution of aboveground biomass (AGB). The selected techniques were: 1) ordinary least-squares regression (OLS), 2) geographically weighted regression (GWR) and, 3) geographically weighted regression - kriging (GWR-K). These techniques were applied to the same field dataset, using the same environmental variables derived from cartographic information and high-resolution remote sensing data (RapidEye). This study was developed in the Amazon rainforest from Sucumbíos - Ecuador. The results of this study showed that the GWR-K, a hybrid technique, provided statistically satisfactory estimates with the lowest prediction error compared to the other two techniques. Furthermore, we observed that 75% of the AGB was explained by the combination of remote sensing data and environmental variables, where the forest types are the most important variable for estimating AGB. It should be noted that while the use of high-resolution images significantly improves the estimation of the spatial distribution of AGB, the processing of this information requires high computational demand.
Resumo:
Tese de Doutoramento em Ciências (Especialidade em Matemática)
Resumo:
The objective of this paper is to analyse to what extent the use of cross-section data will distort the estimated elasticities for car ownership demand when the observed variables do not correspond to a state equilibrium for some individuals in the sample. Our proposal consists of approximating the equilibrium values of the observed variables by constructing a pseudo-panel data set which entails averaging individuals observed at different points of time into cohorts. The results show that individual and aggregate data lead to almost the same value for income elasticity, whereas with respect to working adult elasticity the similarity is less pronounced.
Resumo:
Excessive exposure to solar ultraviolet (UV) is the main cause of skin cancer. Specific prevention should be further developed to target overexposed or highly vulnerable populations. A better characterisation of anatomical UV exposure patterns is however needed for specific prevention. To develop a regression model for predicting the UV exposure ratio (ER, ratio between the anatomical dose and the corresponding ground level dose) for each body site without requiring individual measurements. A 3D numeric model (SimUVEx) was used to compute ER for various body sites and postures. A multiple fractional polynomial regression analysis was performed to identify predictors of ER. The regression model used simulation data and its performance was tested on an independent data set. Two input variables were sufficient to explain ER: the cosine of the maximal daily solar zenith angle and the fraction of the sky visible from the body site. The regression model was in good agreement with the simulated data ER (R(2)=0.988). Relative errors up to +20% and -10% were found in daily doses predictions, whereas an average relative error of only 2.4% (-0.03% to 5.4%) was found in yearly dose predictions. The regression model predicts accurately ER and UV doses on the basis of readily available data such as global UV erythemal irradiance measured at ground surface stations or inferred from satellite information. It renders the development of exposure data on a wide temporal and geographical scale possible and opens broad perspectives for epidemiological studies and skin cancer prevention.
Resumo:
A nationwide survey was launched to investigate the use of fluoroscopy and establish national reference levels (RL) for dose-intensive procedures. The 2-year investigation covered five radiology and nine cardiology departments in public hospitals and private clinics, and focused on 12 examination types: 6 diagnostic and 6 interventional. A total of 1,000 examinations was registered. Information including the fluoroscopy time (T), the number of frames (N) and the dose-area product (DAP) was provided. The data set was used to establish the distributions of T, N and the DAP and the associated RL values. The examinations were pooled to improve the statistics. A wide variation in dose and image quality in fixed geometry was observed. As an example, the skin dose rate for abdominal examinations varied in the range of 10 to 45 mGy/min for comparable image quality. A wide variability was found for several types of examinations, mainly complex ones. DAP RLs of 210, 125, 80, 240, 440 and 110 Gy cm2 were established for lower limb and iliac angiography, cerebral angiography, coronary angiography, biliary drainage and stenting, cerebral embolization and PTCA, respectively. The RL values established are compared to the data published in the literature.
Resumo:
BACKGROUND: Chest pain is a common complaint in primary care, with coronary heart disease (CHD) being the most concerning of many potential causes. Systematic reviews on the sensitivity and specificity of symptoms and signs summarize the evidence about which of them are most useful in making a diagnosis. Previous meta-analyses are dominated by studies of patients referred to specialists. Moreover, as the analysis is typically based on study-level data, the statistical analyses in these reviews are limited while meta-analyses based on individual patient data can provide additional information. Our patient-level meta-analysis has three unique aims. First, we strive to determine the diagnostic accuracy of symptoms and signs for myocardial ischemia in primary care. Second, we investigate associations between study- or patient-level characteristics and measures of diagnostic accuracy. Third, we aim to validate existing clinical prediction rules for diagnosing myocardial ischemia in primary care. This article describes the methods of our study and six prospective studies of primary care patients with chest pain. Later articles will describe the main results. METHODS/DESIGN: We will conduct a systematic review and IPD meta-analysis of studies evaluating the diagnostic accuracy of symptoms and signs for diagnosing coronary heart disease in primary care. We will perform bivariate analyses to determine the sensitivity, specificity and likelihood ratios of individual symptoms and signs and multivariate analyses to explore the diagnostic value of an optimal combination of all symptoms and signs based on all data of all studies. We will validate existing clinical prediction rules from each of the included studies by calculating measures of diagnostic accuracy separately by study. DISCUSSION: Our study will face several methodological challenges. First, the number of studies will be limited. Second, the investigators of original studies defined some outcomes and predictors differently. Third, the studies did not collect the same standard clinical data set. Fourth, missing data, varying from partly missing to fully missing, will have to be dealt with.Despite these limitations, we aim to summarize the available evidence regarding the diagnostic accuracy of symptoms and signs for diagnosing CHD in patients presenting with chest pain in primary care. REVIEW REGISTRATION: Centre for Reviews and Dissemination (University of York): CRD42011001170.
Resumo:
The assessment of medical technologies has to answer several questions ranging from safety and effectiveness to complex economical, social, and health policy issues. The type of data needed to carry out such evaluation depends on the specific questions to be answered, as well as on the stage of development of a technology. Basically two types of data may be distinguished: (a) general demographic, administrative, or financial data which has been collected not specifically for technology assessment; (b) the data collected with respect either to a specific technology or to a disease or medical problem. On the basis of a pilot inquiry in Europe and bibliographic research, the following categories of type (b) data bases have been identified: registries, clinical data bases, banks of factual and bibliographic knowledge, and expert systems. Examples of each category are discussed briefly. The following aims for further research and practical goals are proposed: criteria for the minimal data set required, improvement to the registries and clinical data banks, and development of an international clearinghouse to enhance information diffusion on both existing data bases and available reports on medical technology assessments.
Resumo:
Report for the scientific sojourn at the University of Reading, United Kingdom, from January until May 2008. The main objectives have been firstly to infer population structure and parameters in demographic models using a total of 13 microsatellite loci for genotyping approximately 30 individuals per population in 10 Palinurus elephas populations both from Mediterranean and Atlantic waters. Secondly, developing statistical methods to identify discrepant loci, possibly under selection and implement those methods using the R software environment. It is important to consider that the calculation of the probability distribution of the demographic and mutational parameters for a full genetic data set is numerically difficult for complex demographic history (Stephens 2003). The Approximate Bayesian Computation (ABC), based on summary statistics to infer posterior distributions of variable parameters without explicit likelihood calculations, can surmount this difficulty. This would allow to gather information on different demographic prior values (i.e. effective population sizes, migration rate, microsatellite mutation rate, mutational processes) and assay the sensitivity of inferences to demographic priors by assuming different priors.
Resumo:
In this paper the impact of different types of competences in the labor market for college graduates is investigated. We use two waves of a new data set of Catalan college graduates interviewed three years after graduation. We use wages equation to calculate the payoff to management, communication, specific and instrumental competences. By far, management competences are those which command a higher pay-off. This positive pay-off seems to be independent of individuals’ cognitive capacities. We show that most of the individual endowment in management competences is developed in the workplace. However, a strong background of theoretical knowledge (developed in the class room) helps a great deal to accumulate working related competences and, hence, has a large indirect pay-off.
Resumo:
The aim of this paper is to measure the returns to human capital. We use a unique data set consisting of matched employer-employee information. Data on individuals' human capital include a set of 26 competences that capture the utilization of workers' skills in a very detailed way. Thus, we can expand the concept of human capital and discuss the type of skills that are more productive in the workplace and, hence, generate a higher payoff for the workers. The rich information on firm's and workplace characteristics allows us to introduce a broad range of controls and to improve previous research in this field. This paper gives evidence that the returns to generic competences differ depending on the position of the worker in the firm. Only numeracy skills are reward independent of the occupational status of the worker. The level of technology used by the firm in the production process does not directly increase workers’ pay, but it influences the pay-off to some of the competences. JEL Classification: J24, J31
Resumo:
The aim of this paper is to analyse the effects of human capital, advanced manufacturing technologies (AMT), and new work organizational practices on firm productivity, while taking into account the synergies existing between them. This study expands current knowledge in this area in two ways. First, in contrast with previous works, we focus on AMT and not ICT (information and communication technologies). Second, we use a unique employer-employee data set for small firms in a particular area of southern Europe (Catalonia, Spain). Using a small firm data set, allows us to analyse the particular case of small and medium enterprises, since we cannot assume they have the same characteristics as large firms. The results provide evidence in favor of the complementarity hypothesis between human capital, advanced manufacturing technologies, and new work organization practices, although we show that the complementarity effects depend on what type of work organization practices are used by a firm. For small and medium Catalan firms, the only set of work organization practices that improve the benefits of human capital and technology investment are those practices which are more quality oriented, such as quality circles, problem-solving groups or total quality management.
Resumo:
The paper assesses the relationship between the use of alternative workplace practices (AWP) and job satisfaction. Using a unique employeremployee data set with rich information on both firm and employee characteristics we test whether there is a positive impact of AWPs on job satisfaction (motivation hypothesis) or it is negative (intensification hypothesis). We expand a growing empirical literature focusing on small and medium size firms from a southern European area. Our results show an overall positive effect, depending on the specific practice considered. We also obtain some sort of time-dependence with the effects turning from negative to positive once the practice has been implemented for some time. Keywords: Job satisfaction, work organization, unobserved heterogeneity.
Resumo:
High-growth firms have been shown to be a key factor for economic growth and structural change. This paper analyses the determinants of the number of high-growth firms in a country for 17 OECD countries between 1999 and 2005, using the Amadeus data set, the GEM data set, and others. The first contribution of this paper is that it is – as far as we know – the first empirical analysis of high-growth firms at the country level on the basis of actual measured growth. Second, we find indicative empirical evidence for three driving forces of high growth, viz. entrepreneurship, institutional settings, and opportunities for growth, all in accordance with theory and empirical findings in related fields of research. Third, the paper gives a tentative explanation of the differences in the average percentage of high-growth firms between countries. Finally, the paper gives some clues for policy makers how to promote high-growth firms. Keywords: high-growth firms, fast growing firms, entrepreneurship, institutional obstacles, opportunities for growth
Resumo:
We explore in depth the validity of a recently proposed scaling law for earthquake inter-event time distributions in the case of the Southern California, using the waveform cross-correlation catalog of Shearer et al. Two statistical tests are used: on the one hand, the standard two-sample Kolmogorov-Smirnov test is in agreement with the scaling of the distributions. On the other hand, the one-sample Kolmogorov-Smirnov statistic complemented with Monte Carlo simulation of the inter-event times, as done by Clauset et al., supports the validity of the gamma distribution as a simple model of the scaling function appearing on the scaling law, for rescaled inter-event times above 0.01, except for the largest data set (magnitude greater than 2). A discussion of these results is provided.
Resumo:
It is well known that dichotomizing continuous data has the effect to decrease statistical power when the goal is to test for a statistical association between two variables. Modern researchers however are focusing not only on statistical significance but also on an estimation of the "effect size" (i.e., the strength of association between the variables) to judge whether a significant association is also clinically relevant. In this article, we are interested in the consequences of dichotomizing continuous data on the value of an effect size in some classical settings. It turns out that the conclusions will not be the same whether using a correlation or an odds ratio to summarize the strength of association between the variables: Whereas the value of a correlation is typically decreased by a factor pi/2 after each dichotomization, the value of an odds ratio is at the same time raised to the power 2. From a descriptive statistical point of view, it is thus not clear whether dichotomizing continuous data leads to a decrease or to an increase in the effect size, as illustrated using a data set to investigate the relationship between motor and intellectual functions in children and adolescents