965 resultados para AGULHAS LEAKAGE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Leakage is the most common complication of percutaneous cement augmentation of the spine. The viscosity of the polymethylmethacrylate (PMMA) cement is strongly correlated with the likelihood of cement leakage. We hypothesized that cement leakage can be reduced by sequential cement injection in a vertebroplasty model. METHODS A standardized vertebral body substitute model, consisting of aluminum oxide foams coated by acrylic cement with a preformed leakage path, simulating a ventral vein, was developed. Three injection techniques of 6 ml PMMA were assessed: injection in one single step (all-in-one), injection of 1 ml at the first and 5 ml at the second step with 1 min latency in-between (two-step), and sequential injection of 0.5 ml with 1-min latency between the sequences (sequential). Standard PMMA vertebroplasty cement was used; each injection type was tested on ten vertebral body substitute models with two possible leakage paths per model. Leakage was assessed by radiographs using a zonal graduation: intraspongious = no leakage and extracortical = leakage. RESULTS The leakage rate was significantly lower in the "sequential" technique (2/20 leakages) followed by "two-step" (15/20) and "all-in-one" (20/20) techniques (p < 0.001). The RR for a cement leakage was 10.0 times higher in the "all-in-one" compared to the "sequential" group (95 % confidence intervals 2.7-37.2; p < 0.001). CONCLUSIONS The sequential cement injection is a simple approach to minimize the risk for leakage. Taking advantage of the temperature gradient between body and room temperature, it is possible to increase the cement viscosity inside the vertebra while keeping it low in the syringe. Using sequential injection of small cement volumes, further leakage paths are blocked before further injection of the low-viscosity cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE This study aimed at assessing the cement leakage rate and the filling pattern in patients treated with vertebroplasty, kyphoplasty and stentoplasty with and without a newly developed lavage technique. STUDY DESIGN Retrospective clinical case-control study. METHODS A newly developed bipedicular lavage technique prior to cement application was applied in 64 patients (45.1 %) with 116 vertebrae, ("lavage" group). A conventional bipedicular cement injection technique was used in 78 patients (54.9 %) with 99 levels ("controls"). The outcome measures were filling patterns and leakage rates. RESULTS The overall leakage rate (venous, cortical defect, intradiscal) was 37.9 % in the lavage and 83.8 % in the control group (p < 0.001). Venous leakage (lavage 12.9 % vs. controls 31.3 %; p = 0.001) and cortical defect leakage (lavage 17.2 % vs. controls 63.3 %; p < 0.001) were significantly lower in the lavage group compared to "controls," whereas intradiscal leakages were similar in both groups (lavage 12.1 % vs. controls 15.2 %; p = 0.51). For venous leakage multivariate logistic regression analysis showed lavage to be the only independent predictor. Lavage was associated with 0.33-times (95 % CI 0.16-0.65; p = 0.001) lower likelihood for leakage in compared to controls. CONCLUSIONS Vertebral body lavage prior to cement augmentation is a safe technique to reduce cement leakage in a clinical setting and has the potential to prevent pulmonary fat embolism. Moreover, a better filling pattern can be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution and speciation of iron was determined along a transect in the eastern Atlantic sector (6°E) of the Southern Ocean during a collaborative Scandinavian/South African Antarctic cruise conducted in late austral summer (December 1997/January 1998). Elevated concentrations of dissolved iron (>0.4 nM) were found at 60°S in the vicinity of the Spring Ice Edge (SIE) in tandem with a phytoplankton bloom, chiefly dominated by Phaeocystis sp. This bloom had developed rapidly after the loss of the seasonal sea ice cover. The iron that fuelled this bloom was mostly likely derived from sea ice melt. In the Winter Ice Edge (WIE), around 55°S, dissolved iron concentrations were low (<0.2 nM) and corresponded to lower biological productivity, biomass. In the Antarctic Polar Front, at approximately 50°S, a vertical profile of dissolved iron showed low concentrations (<0.2 nM); however, a surface survey showed higher concentrations (1-3 nM), and considerable patchiness in this dynamic frontal region. The chemical speciation of iron was dominated by organic complexation throughout the study region. Organic iron-complexing ligands ([L]) ranged from 0.9 to 3.0 nM Fe equivalents, with complex stability log K'(FeL) = 21.4-23.5. Estimated concentrations of inorganic iron (Fe') ranged from 0.03 to 0.79 pM, with the highest values found in the Phaeocystis bloom in the SIE. A vertical profile of iron-complexing ligands in the WIE showed a maximum consistent with a biological source for ligand production and near surface minimum possibly consistent with loss via photodecomposition. This work further confirms the role iron that has in the Southern Ocean in limiting primary productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of planktic foraminiferal assemblages from Site 1090 (ODP Leg 177), located in the central part of the Subantarctic Zone south of South Africa, provided a geochronology of a 330-m-thick sequence spanning the Middle Eocene to Early Pliocene. A sequence of discrete bioevents enables the calibration of the Antarctic Paleogene (AP) Zonation with lower latitude biozonal schemes for the Middle-Late Eocene interval. In spite of the poor recovery of planktic foraminiferal assemblages, a correlation with the lower latitude standard planktic foraminiferal zonations has been attempted for the whole surveyed interval. Identified bioevents have been tentatively calibrated to the geomagnetic polarity time scale following the biochronology of Berggren et al. (1995). Besides planktic foraminiferal bioevents, the disappearance of the benthic foraminifera Nuttallides truempyi has been used to approximate the Middle/Late Eocene boundary. A hiatus of at least 11.7 Myr occurs between V78 and V71 m composite depth extending from the Early Miocene to the latest Miocene-Early Pliocene. Middle Eocene assemblages exhibit a temperate affinity, while the loss of several planktic foraminiferal species by late Middle to early Late Eocene time reflects cooling. During the Late Eocene-Oligocene intense dissolution caused impoverishment of planktic foraminiferal assemblages possibly following the emplacement of cold, corrosive bottom waters. Two warming peaks are, however, observed: the late Middle Eocene is marked by the invasion of the warmer water Acarinina spinuloinflata and Hantkenina alabamensis at 40.5 Ma, while the middle Late Eocene experienced the immigration of some globigerinathekids including Globigerinatheka luterbacheri and Globigerinatheka cf. semiinvoluta at 34.3 Ma. A more continuous record is observed for the Early Miocene and the Late Miocene-Early Pliocene where planktic foraminiferal assemblages show a distinct affinity with southern mid- to high-latitude faunas.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: