938 resultados para ACIDIC PHOSPHOLIPIDS
Resumo:
The elemental composition of residues of maize (Zea mays), sorghum (S. bicolor), groundnuts (Arachis hypogea), soya beans (Glycine max), leucaena (L. leucocephala), gliricidia (G. sepium), and sesbania (S. sesban) was determined as a basis for examining their alkalinity when incorporated into an acidic Zambian Ferralsol. Potential (ash) alkalinity, available alkalinity by titration to pH 4 and soluble alkalinity (16 It water extract titrated to pH 4) were measured. Potential alkalinity ranged from 3 73 (maize) to 1336 (groundnuts) mmol kg(-1) and was equivalent to the excess of their cation charge over inorganic anion charge. Available alkalinity was about half the potential alkalinity. Cations associated with organic anions are the source of alkalinity. About two thirds of the available alkalinity is soluble. Residue buffer curves were determined by titration with H2SO4 to pH 4. Soil buffer capacity measured by addition of NaOH was 12.9 mmol kg(-1) pH(-1). Soil and residue (10 g:0.25 g) were shaken in solution for 24 h and suspension pH values measured. Soil pH increased from 4.3 to between 4.6 (maize) and 5.2 (soyabean) and the amounts of acidity neutralized (calculated from the rise in pH and the soil buffer capacity) were between 3.9 and 11.5 mmol kg(-1), respectively. The apparent base contributions by the residues (calculated from the buffer curves and the fall in pH) ranged between 105 and 350 mmol kg(-1) of residue, equivalent to 2.6 and 8.8 mmol kg(-1) of soil, respectively. Therefore, in contact with soil acidity, more alkalinity becomes available than when in contact with H2SO4 solution. Available alkalinity (to pH 4) would be more than adequate to supply that which reacts with soil but soluble alkalinity would not. It was concluded that soil Al is able to displace cations associated with organic anions in the residues which are not displaced by H+, or that residue decomposition may have begun in the soil suspension releasing some of the non-available alkalinity. Soil and four of the residues were incubated for 100 days and changes in pH, NH4+ and NO3- concentrations measured. An acidity budget equated neutralized soil acidity with residue alkalinity and base or acid produced by N transformations. Most of the potential alkalinity of soyabean and leucaena had reacted after 14 days, but this only occurred after 100 days for gliricidia, and for maize only the available alkalinity reacted. For gliricidia and leucaena, residue alkalinity was primarily used to react with acidity produced by nitrification. Thus, the ability of residues to ameliorate acidity depends not only on their available and potential alkalinity but also on their potential to release mineral N. (C) 2004 Elsevier B.V. All rights reserved.
The activity of ribosome modulation factor during growth of Escherichia coli under acidic conditions
Resumo:
Expression of the gene encoding ribosome modulation factor (RMF), as measured using an rmf-lacZ gene fusion, increased with decreasing pH in exponential phase cultures of Escherichia coli. Expression was inversely proportional to the growth rate and independent of the acidifying agent used and it was concluded that expression of rmf was growth rate controlled in exponential phase under acid conditions. Increased rmf expression during exponential phase was not accompanied by the formation of ribosome dimers as occurs during stationary phase. Nor did it appear to have a significant effect on cell survival under acid stress since the vulnerability of an RMF-deficient mutant strain was similar to that of the parent strain. Ribosome degradation was increased in the mutant strain compared to the parent strain at pH 3.75. Also, the peptide elongation rate was reduced in the mutant strain but not the parent during growth under acid conditions. It is speculated that the function of RMF during stress-induced reduction in growth rate is two-fold: firstly to prevent reduced elongation efficiency by inactivating surplus ribosomes and thus limiting competition for available protein synthesis factors, and secondly to protect inactivated ribosomes from degradation.
Resumo:
The ability of the standard pre-enrichment procedure in buffered peptone water (BPW) to recover Salmonella Typhimurium from acidic marinade sauces containing spices was tested by inoculating marinade sauces with known numbers of an antibiotic-resistant marker strain of Salmonella Typhimurium DT104 prior to pre-enrichment. Viable numbers of salmonellae present in BPW after 24h incubation depended on the inoculum level. If initial cell numbers were low (below 103 cfu per 250 ml BPW) final cell concentrations were also low and, in some cases, no growth occurred. The problem was overcome by use of double-strength BPW that neutralised the acidity and allowed good recovery from otherwise inhibitory marinade sauces.
Resumo:
This study has investigated the influence of dietary fatty acid composition on mammary tumour incidence in N-ethyl-N-nitrosourea (ENU)-treated rats and has compared the susceptibility to dietary fatty acid modification of the membrane phospholipids phosphatidyliuositol (PI) and phosphatidylethanolamine (PE) from normal and tumour tissue of rat mammary gland. The incidence of mammary tumours was significantly lower in fish oil- (29%), compared with olive oil- (75%; P < 0.04) but not maize oil- (63%; P < 0.1) fed animals. No differences in PI fatty acid composition were found in normal or tumour tissue between rats fed on maize oil, olive oil or fish oil in diets from weaning. When normal and tumour tissue PI fatty acids were compared, significantly higher amounts of stearic acid (18:O) were found in tumour than normal tissue in rats given olive oil (P < 0.05). A similar trend was found in animals fed on maize oil, although differences between normal and tumour tissue did not reach a level of statistical significance (P < 0.1). In mammary PE, maize oil-fed control animals had significantly higher levels of linoleic acid (18:2n-6) than either olive oil- or fish oil-fed animals (P < 0.05, both cases) and levels of arachidonic acid were also higher in maize oil- compared with fish oil-fed animals (P < 0.05). In tumourbearing animals no differences in PE fatty acid composition were found between the three dietary groups. When normal and tumour tissue PE fatty acids were compared, significantly lower amounts of liuoleic acid (18:2n-6; P < 0.01) and significantly greater amounts of arachidonic acid (20:4n-6; P < 0.05) were found in tumour than normal tissue of rats fed on maize oil. The present study shows that the fatty acid composition of PI from both normal and tumour tissue of the mammary gland is resistant to dietary fatty acid modification. The PE fraction is more susceptible to dietary modification and in this fraction there is evidence of increased conversion of linoleic acid to arachidonic acid in tumour compared with normal tissue. Lower tumour incidence rates in rats given fish oils may in part be due to alteration in prostanoid metabolism secondary to displacement of arachidonic acid by eicosapentaenoic acid, but PE rather than PI would appear to be the most likely locus for diet-induced alteration in prostanoid synthesis in this tissue. Effects of dietary fatty acids other than on the balance of n-6 and n-3 fatty acids, and on prostanoid metabolism, should also be considered. The significance of increased stearic acid content of PI in tumours of olive oil-fed animals and the possible influence of dietary fatty acids on the capacity for stearic acid accumulation requires further study.
Resumo:
The fatty acid compositions of the -choline and -inositol phospholipids of breast tumours of women undergoing surgery for treatment of breast disease (malignant n = 12; benign n = 10) and normal breast tissue of women undergoing breast reduction surgery (n = 6) were determined. The fatty acid compositions of erythrocyte phospholipids were also determined in the same subjects and in an additional number of normal healthy volunteers (n = 16). Levels of oleic acid were lower in both phospholipid fractions of erythrocytes of women with breast disease and in the phosphatidylcholine fraction of breast tumours compared with normal breast tissue. Significantly higher levels of linoleic acid were found in erythrocytes of tumour-bearing subjects and a similar trend was evident in the phosphatidylcholine fraction of tumour compared with normal breast tissues. Conversely, lower levels of two of the products of linoleic acid chain elongation and desaturation, dihomogamma-linolenic and arachidonic acids, were found in the erythrocyte phospholipids of tumour-bearing subjects and in the choline phospholipids of breast tumour tissues. These data suggest that in women with breast disease, there may be inhibition of 6-desaturase, and enhanced activity of 9-desaturase, enzymes which play an important role in determining membrane phospholipid fatty acid composition. This pattern of altered fatty acid composition characteristic of erythrocyte phospholipids of tumour-bearing subjects and phosphatidylcholine of breast tumour tissue was less evident in the case of the breast tumour phosphatidylinositol in which differences other than those described were seen.
Resumo:
The present study investigated the effect of feeding maize-oil, olive-oil and fish-oil diets, from weaning to adulthood, on rat mammary tissue and erythrocyte phospholipid fatty acid compositions. Effects of diet on the relative proportions of membrane phospholipids in the two tissues were also investigated. Mammary tissue phosphatidylinositol (PI) fatty acids were unaltered by diet, but differences in phosphatidylethanolamine (PE) and, to a lesser extent, phosphatidylcholine (PC) fractions were found between animals fed on different diets from weaning. Differences observed were those expected from the dietary fatty acids fed; n-6 fatty acids were found in greatest amounts in maize-oil-fed rats, n-9 in olive-oil-fed rats, and n-3 in fish-oil-fed rats. In erythrocytes the relative susceptibilities of the individual phospholipids to dietary modification were: PE > PC > PI, but enrichment with n-9 and n-3 fatty acids was not observed in olive-oil- and fish-oil-fed animals and in PC and PE significantly greater amounts of saturated fatty acids were found when animals fed on olive oil or fish oil were compared with maize-oil-fed animals. The polyunsaturated:saturated fatty acid ratios of PE and PC fractions were significantly lower in olive-oil- and fish-oil-fed animals. No differences in the relative proportions of phospholipid classes were found between the three dietary groups. It is suggested that differences in erythrocyte fatty acid composition may reflect dietary-induced changes in membrane cholesterol content and may form part of a homoeostatic response the aim of which is to maintain normal erythrocyte membrane fluidity. The resistance of mammary tissue PI fatty acids to dietary modification suggests that alteration of PI fatty acids is unlikely to underlie effects of dietary fat on mammary tumour incidence rates.
Resumo:
The survival of Bifidobacterium longum NCIMB 8809 was studied during refrigerated storage for 6 weeks in model solutions, based on which a mathematical model was constructed describing cell survival as a function of pH, citric acid, protein and dietary fibre. A Central Composite Design (CCD) was developed studying the influence of four factors at three levels, i.e., pH (3.2–4), citric acid (2–15 g/l), protein (0–10 g/l), and dietary fibre (0–8 g/l). In total, 31 experimental runs were carried out. Analysis of variance (ANOVA) of the regression model demonstrated that the model fitted well the data. From the regression coefficients it was deduced that all four factors had a statistically significant (P < 0.05) negative effect on the log decrease [log10N0 week−log10N6 week], with the pH and citric acid being the most influential ones. Cell survival during storage was also investigated in various types of juices, including orange, grapefruit, blackcurrant, pineapple, pomegranate and strawberry. The highest cell survival (less than 0.4 log decrease) after 6 weeks of storage was observed in orange and pineapple, both of which had a pH of about 3.8. Although the pH of grapefruit and blackcurrant was similar (pH ∼3.2), the log decrease of the former was ∼0.5 log, whereas of the latter was ∼0.7 log. One reason for this could be the fact that grapefruit contained a high amount of citric acid (15.3 g/l). The log decrease in pomegranate and strawberry juices was extremely high (∼8 logs). The mathematical model was able to predict adequately the cell survival in orange, grapefruit, blackcurrant, and pineapple juices. However, the model failed to predict the cell survival in pomegranate and strawberry, most likely due to the very high levels of phenolic compounds in these two juices.
Resumo:
Novel acidic varieties of muskmelon (Cucumis melo L.) are emerging onto the UK market. These melons contain almost twice the amount of citric acid compared to standard melons and are described as ‘zesty and fresh’. This study compared the flavour components of three acidic varieties with a standard Galia-type melon. The volatile and semivolatile compounds were extracted using dynamic headspace extraction (DHE) or solid-phase microextraction (SPME) and solid phase extraction (SPE) respectively, followed by gas chromatography – mass spectrometry (GC-MS) and gas chromatography – olfactometry (GC-O). More than 50 volatile and 50 semivolatile compounds were identified in the headspace and the SPE extracts respectively. GC-O revealed 15 odour-active components in the headspace, with esters being consistently higher in acidic variety. This study showed quantitative and qualitative differences between all four varieties and key differences between acidic varieties and standard melons.
Resumo:
CLEC-2 is a member of new family of C-type lectin receptors characterized by a cytosolic YXXL downstream of three acidic amino acids in a sequence known as a hemITAM (hemi-immunoreceptor tyrosine-based activation motif). Dimerization of two phosphorylated CLEC-2 molecules leads to recruitment of the tyrosine kinase Syk via its tandem SH2 domains and initiation of a downstream signaling cascade. Using Syk-deficient and Zap-70-deficient cell lines we show that hemITAM signaling is restricted to Syk and that the upstream triacidic amino acid sequence is required for signaling. Using surface plasmon resonance and phosphorylation studies, we demonstrate that the triacidic amino acids are required for phosphorylation of the YXXL. These results further emphasize the distinct nature of the proximal events in signaling by hemITAM relative to ITAM receptors.
Resumo:
This paper deals with the complex issue of reversing long-term improvements of fertility in soils derived from heathlands and acidic grasslands using sulfur-based amendments. The experiment was conducted on a former heathland and acid grassland in the U.K. that was heavily fertilized and limed with rock phosphate, chalk, and marl. The experimental work had three aims. First, to determine whether sulfurous soil amendments are able to lower pH to a level suitable for heathland and acidic grassland re-creation (approximately 3 pH units). Second, to determine what effect the soil amendments have on the available pool of some basic cations and some potentially toxic acidic cations that may affect the plant community. Third, to determine whether the addition of Fe to the soil system would sequester PO4− ions that might be liberated from rock phosphate by the experimental treatments. The application of S0 and Fe(II)SO4− to the soil was able to reduce pH. However, only the highest S0 treatment (2,000 kg/ha S) lowered pH sufficiently for heathland restoration purposes but effectively so. Where pH was lowered, basic cations were lost from the exchangeable pool and replaced by acidic cations. Where Fe was added to the soil, there was no evidence of PO4− sequestration from soil test data (Olsen P), but sequestration was apparent because of lower foliar P in the grass sward. The ability of the forb Rumex acetosella to apparently detoxify Al3+, prevalent in acidified soils, appeared to give it a competitive advantage over other less tolerant species. We would anticipate further changes in plant community structure through time, driven by Al3+ toxicity, leading to the competitive exclusion of less tolerant species. This, we suggest, is a key abiotic driver in the restoration of biotic (acidic plant) communities.
Resumo:
The protozoan parasite Leishmania causes serious infections in humans all over the world. After being inoculated into the skin through the bite of an infected sandfly, Leishmania promastigotes must gain entry into macrophages to initiate a successful infection. Specific, surface exposed phospholipids have been implicated in Leishmania-macrophage interaction but the mechanisms controlling and regulating the plasma membrane lipid distribution remains to be elucidated. Here, we provide evidence for Ca(2+)-induced phospholipid scrambling in the plasma membrane of Leishmania donovani. Stimulation of parasites with ionomycin increases intracellular Ca(2+) levels and triggers exposure of phosphatidylethanolamine at the cell surface. We found that increasing intracellular Ca(2+) levels with ionomycin or thapsigargin induces rapid transbilayer movement of NBD-labelled phospholipids in the parasite plasma membrane that is bidirectional, independent of cellular ATP and not specific to the polar lipid head group. The findings suggest the presence of a Ca(2+)-dependent lipid scramblase activity in Leishmania parasites. Our studies further show that lipid scrambling is not activated by rapid exposure of promastigotes to higher physiological temperature that increases intracellular Ca(2+) levels. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The molecular mechanism of factor Xa (FXa) inhibition by Alboserpin, the major salivary gland anticoagulant from the mosquito and yellow fever vector Aedes albopictus, has been characterized. cDNA of Alboserpin predicts a 45-kDa protein that belongs to the serpin family of protease inhibitors. Recombinant Alboserpin displays stoichiometric, competitive, reversible and tight binding to FXa (picomolar range). Binding is highly specific and is not detectable for FX, catalytic site-blocked FXa, thrombin, and 12 other enzymes. Alboserpin displays high affinity binding to heparin (K(D) similar to 20 nM), but no change in FXa inhibition was observed in the presence of the cofactor, implying that bridging mechanisms did not take place. Notably, Alboserpin was also found to interact with phosphatidylcholine and phosphatidylethanolamine but not with phosphatidylserine. Further, annexin V (in the absence of Ca(2+)) or heparin outcompetes Alboserpin for binding to phospholipid vesicles, suggesting a common binding site. Consistent with its activity, Alboserpin blocks prothrombinase activity and increases both prothrombin time and activated partial thromboplastin time in vitro or ex vivo. Furthermore, Alboserpin prevents thrombus formation provoked by ferric chloride injury of the carotid artery and increases bleeding in a dose-dependent manner. Alboserpin emerges as an atypical serpin that targets FXa and displays unique phospholipid specificity. It conceivably uses heparin and phosphatidylcholine/phosphatidylethanolamine as anchors to increase protein localization and effective concentration at sites of injury, cell activation, or inflammation.
Resumo:
The use of liposomes to encapsulate materials has received widespread attention for drug delivery, transfection, diagnostic reagent, and as immunoadjuvants. Phospholipid polymers form a new class of biomaterials with many potential applications in medicine and research. Of interest are polymeric phospholipids containing a diacetylene moiety along their acyl chain since these kinds of lipids can be polymerized by Ultra-Violet (UV) irradiation to form chains of covalently linked lipids in the bilayer. In particular the diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DC8,9PC) can form intermolecular cross-linking through the diacetylenic group to produce a conjugated polymer within the hydrocarbon region of the bilayer. As knowledge of liposome structures is certainly fundamental for system design improvement for new and better applications, this work focuses on the structural properties of polymerized DC8,9PC:1,2-dimyristoyl-sn-glycero-3-phusphocholine (DMPC) liposomes. Liposomes containing mixtures of DC8,9PC and DMPC, at different molar ratios, and exposed to different polymerization cycles, were studied through the analysis of the electron spin resonance (ESR) spectra of a spin label incorporated into the bilayer, and the calorimetric data obtained from differential scanning calorimetry (DSC) studies. Upon irradiation, if all lipids had been polymerized, no gel-fluid transition would be expected. However, even samples that went through 20 cycles of UV irradiation presented a DSC band, showing that around 80% of the DC8,9PC molecules were not polymerized. Both DSC and ESR indicated that the two different lipids scarcely mix at low temperatures, however few molecules of DMPC are present in DC8,9PC rich domains and vice versa. UV irradiation was found to affect the gel fluid transition of both DMPC and DC8,9PC rich regions, indicating the presence of polymeric units of DC8,9PC in both areas, A model explaining lipids rearrangement is proposed for this partially polymerized system.
Resumo:
The use of natural substances in health applications may be hampered by the difficulties in establishing the mechanisms of action, especially at molecular-level. The protein-polysaccharide complex extracted from the mushroom Agaricus blazei Murill, referred to as CAb, has been considered for treating various diseases with probable interaction with cell membranes. In this study, we investigate the interaction between CAb and a cell membrane model represented by a Langmuir monolayer of dimyristoyl phosphatidic acid (DMPA). CAb affects the structural properties of DMPA monolayers causing expansion and increasing compressibility. In addition, interaction with DMPA polar heads led to neutralization of the electrical double layer, yielding a zero surface potential at large areas per molecule. CAb remained at the interface even at high surface pressures, which allowed transfer of Langmuir-Blodgett (LB) films onto solid supports with the CAb-DMPA mixture. The mass transferred, according to quartz crystal microbalance (QCM) measurements, increased linearly with the number of deposited layers. With UV-vis absorption, fluorescence and FTIR spectroscopies, we confirmed that the LB films contain polysaccharides, proteins and DMPA. Therefore, the CAb biological action must be attributed not only to polysaccharides but also to proteins in the complex. (C) 2008 Elsevier Inc. All rights reserved.