970 resultados para ACID-SOLUTIONS
Resumo:
Common to many types of water and wastewater is the presence of sodium ions which can be removed by desalination technologies, such as reverse osmosis and ion exchange. The focus of this investigation was ion exchange as it potentially offered several advantages compared to competing methods. The equilibrium and column behaviour of a strong acid cation (SAC) resin was examined for the removal of sodium ions from aqueous sodium chloride solutions of varying normality as well as a coal seam gas water sample. The influence of the bottle-point method to generate the sorption isotherms was evaluated and data interpreted with the Langmuir Vageler, Competitive Langmuir, Freundlich, and Dubinin-Astakhov models. With the constant concentration bottle point method, the predicted maximum exchange levels of sodium ions on the resin ranged from 61.7 to 67.5 g Na/kg resin. The general trend was that the lower the initial concentration of sodium ions in the solution, the lower the maximum capacity of the resin for sodium ions. In contrast, the constant mass bottle point method was found to be problematic in that the isotherm profiles may not be complete, if experimental parameters were not chosen carefully. Column studies supported the observations of the equilibrium studies, with maximum sodium loading of ca. 62.9 g Na/kg resin measured, which was in excellent agreement with the predictions of the data from the constant concentration bottle point method. Equilibria involving coal seam gas water were more complex due to the presence of sodium bicarbonate in solution, albeit the maximum loading capacity for sodium ions was in agreement with the results from the more simple sodium chloride solutions.
Resumo:
Coal seam gas production has resulted in the production of large volumes of associated water which contains dissolved salts dominated by sodium chloride and sodium bicarbonate. Ion exchange using synthetic resins has been proposed as a method for desalination of coal seam water to make it suitable for various beneficial reuse options. This study investigated the behaviour of solutions of sodium chloride and sodium bicarbonate with respect to exchange with Lanxess S108H strong acid cation (SAC) resin. Equilibrium isotherms were created for solutions of NaCl and NaHCO3 and an actual sample of coal seam water from the Surat Basin in southern Queensland. The exchange of sodium ions arising from sodium bicarbonate was found to be considerably more favourable than exchange of sodium ions from sodium chloride solutions. This latter behaviour was attributed to the secondary decomposition of bicarbonate species under acidic conditions which resulted in the evolution of carbon dioxide and formation of water. The isotherm profiles could not be satisfactorily fitted by a single isotherm model such as the Langmuir expression. Instead, two Langmuir equations had to be simultaneously applied in order to fit the sections of the isotherm attributable to sodium ion exchange from sodium bicarbonate and sodium chloride. The shape of the isotherm profile was dependent upon the ratio of sodium chloride to sodium bicarbonate in solution and there was a high degree of correlation between simulated and actual coal seam water solutions.
Resumo:
By employing Carstensen's phase-comparison pulse method for measuring ultrasonic velocity-differences, the compressibility of sulphuric acid has been studied anew, the special interest being in the low concentration region. Sulphuric acid is found to show at first a decrease in velocity with increasing concentration and then an increase. The curve representing the apparent molal compressibility Φ(κ̄2) against the square root of the molar concentration c, shows a maximum and a minimum. This anomalous behaviour is interesting in view of the extreme anomalies in other colligative properties of sulphuric acid. A qualitative explanation of the observed maximum and minimum has been suggested.
Resumo:
Microcystins (MCs) are a family of related cyclic hepatotoxic heptapeptides, of which more than 70 types have been identified. The chemically unique nature of the C20 beta-amino acid, (2S, 3S, 8S, 9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca4,6-dienoic acid (Adda), portion of the MCs has been exploited to develop a strategy to analyze the entirety. Oxidation of MCs causes the cleavage of MC Adda to form 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB). In the present study, we investigated the kinetics of MMPB produced by oxidation of the most-often-studied MC variant, MC-LR (L = leucine, R = arginine), with permanganate-periodate. This investigation allowed insight regarding the influence of the reaction conditions (concentration of the reactants, temperature, and pH) on the conversion rate. The results indicated that the reaction was second order overall and first order with respect to both permanganate and MC-LR. The second-order rate constant ranged from 0.66 to 1.35 M/s at temperatures from 10 to 30 degrees C, and the activation energy was 24.44 kJ/mol. The rates of MMPB production can be accelerated through increasing reaction temperature and oxidant concentration, and sufficient periodate is necessary for the formation of MMPB. The initial reaction rate under alkaline and neutral conditions is higher than that under acidic conditions, but the former decreases faster than the latter except under weakly acidic conditions. These results provided new insight concerning selection of the permanganate-periodate concentration, pH, and temperature needed for the oxidation of MCs with a high and stable yield of MMPB.
Resumo:
In this work, the photodegradation of the carcinogenic pollutant 2-naphthol in aqueous solution containing Aldrich humic acid (HA) and ferric ions (Fe(III)) under 125 W and 250 W high pressure mercury lamp (HPML, lambda >= 365 nm) irradiation was investigated. The photooxidation efficiencies were dependent on the pH values, light intensities and Fe(III)/HA concentration in the water, with higher efficiency at pHs 3-4, and 50 mu mol l(-1) Fe(III) with 20 mg l(-1) HA under 250 W HPML. The initial rate of photooxidation increases with increasing, the initial concentration of 2-naphthol from 10 mu mol l(-1) to 100 mu mol l(-1), while do not change at 50 and 100 mu mol l(-1). However, higher removal efficiency of 2-naphthol is achieved at its lower initial concentration of 10 mu mol l(-1), and initial rate of photooxidation is 0.193 mu mol l(-1) min(-1). Dissolved oxygen (DO) plays an important role in the system containing Fe(III)-HA complexes in which Fenton and photo-Fenton reactions were enhanced in the environment. Hydroxyl radicals produced in HA solution with or without ferric ions were determined by using benzene as free radical scavenger and phenol as scavenging products proportional to hydroxyl radicals. By using UV-Vis and excited fluorescence spectrum techniques, the main photooxidation products, which have higher absorption in the region of 240-340 nm, were found, and the mechanisms for the oxidative degradation is proposed.
Resumo:
Synergistic extraction and recovery of Cerium(IV) (Ce(IV)) and Fluorin (F) from sulfuric solutions using mixture of Cyanex 923 and di-2-ethylhexyl phosphoric acid (D2EHPA) in n-heptane have been carried out. in order to investigate the synergistic extraction of Cyanex 923 + D2EHPA, extraction Ce(IV), F, Ce(III) and Ce-F mixture solution using D2EHPA or Cyanex 923 as extractant alone were studied firstly, and then Synergistic extraction of Ce(IV), F and Ce(IV)-F mixture solution with D2EHPA + Cyanex 923 were carried out. The largest synergistic coefficient of Ce(IV) is obtained at the mole fraction X-Cyanex (923) = 0.8. The synergistic enhancement coefficients (R-max) obtained for Ce(IV) are 23.12 in Ce(IV) solution, and in Ce-F mixed solution R-max for Ce(IV) and F are 2.24 and 3.25 respectively.
Resumo:
The first thermodynamic dissociation constants of glycine in 5, 15 mass % glucose + water mixed solvents at five temperatures from 5 to 45-degrees-C have been determined from precise emf measurements of a cell without liquid junction using hydrogen and Ag-AgCl electrodes and a new method of polynomial approximation proposed on the basis of Pitzer's electrolytic solution theory in our previous paper. The results obtained from both methods agree within experimental error. The standard free energy of transfer for HCl from water to aqueous mixed solvent have been calculated and the results are discussed.
Resumo:
Solubilities of 4-nitrobenzoic acid at 25°, 35° and 42°C have been determined in water and in the presence of several concentrations of electrolytes. The free energies, enthalpies and entropies of transfer are also reported. The data have been rationalized by considering the structure-breaking effects of the ions of the salts and the requirement of the localized hydrolysis model. The theory of Symons is not satisfactory to rationalise the experimental data.
Resumo:
The Setschenow parameters of solubility in salt solutions and the thermodynamic parameters (25·C) of transfer from aqueous solution to aqueous salt solutions for 2-nitrobenzoic acid and 3-nitrobenzoic acid have been reported. The data have been rationalized on the basis of the localized hydrolysis model and the structure breaking action of ions of the electrolytes.
Resumo:
PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.
Resumo:
Adsorption isotherms for the removal of linoleic acid from aqueous ethanol were measured using a strong anion exchange resin (Amberlyst A26 OH). The data for linoleic acid were compared with previously published results for oleic acid. The equilibrium data were correlated using the Langmuir and Freundlich isotherms. Lower average deviations between experimental and calculated results were obtained with the Langmuir model. The capacity of the resin for adsorbing linoleic acid was evaluated at different water contents in ethanol, 100 w = 0.50 to 15.27, and at 298.15 K. The water content in ethanol does not influence significantly the equilibrium behavior, and the strong anion exchange resin has a good performance in the removal of linoleic acid from the liquid phase.
Resumo:
This paper reports experiments involving the electrochemical combustion of humic acid (HA) and removal of algae from pond water. An electrochemical flow reactor with a boron-doped diamond film anode was used and constant current experiments were conducted in batch recirculation mode. The mass transfer characteristics of the electrochemical device were determined by voltammetric experiments in the potential region of water stability, followed by a controlled current experiment in the potential region of oxygen evolution. The average mass transfer coefficient was 5.2 x 10(-5) m s(-1). The pond water was then processed to remove HA and algae in the conditions in which the reaction combustion occurred under mass transfer control. To this end, the mass transfer coefficient was used to estimate the initial limiting current density applied in the electrolytic experiments. As expected, all the parameters analyzed here-solution absorbance at 270 nm, total phenol concentration and total organic carbon concentration-decayed according to first-order kinetics. Since the diamond film anode successfully incinerated organic matter, the electrochemical system proved to be predictable and programmable.