984 resultados para ACID BREATH TEST


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To test the hypothesis that 3,5,3'-triiodothyroacetic acid (Triac) is more active as a TSH suppressor than on peripheral parameters of thyroid hormone action, the following parameters were studied: basal metabolic rate, sleeping energy expenditure (SEE), sex hormone-binding globulin, and cholesterol. In a double blind trial, 14 subjects received during 3 weeks (phase 1) 180 micrograms T4 or 1700 micrograms Triac daily, divided into 3 doses, to suppress thyroidal secretion. The dosage was doubled for the next 3 weeks (phase 2). Under T4 treatment, TSH reached 0.11 mU/L during phase 1 and less than 0.03 mU/L during phase 2. With Triac, a marked TSH inhibition occurred after 1 week (0.17 mU/L), followed by an escape during the following 2 weeks (0.63 mU/L). During phase 2, an almost complete TSH suppression was obtained (0.03 mU/L). Both Triac doses suppressed endogenous thyroid hormone secretion, as evidenced by T4 and rT3 levels. Both substances induced a 2-fold stimulation of sex hormone-binding globulin during phase 2. Serum cholesterol decreased similarly, without affecting the high/low density lipoprotein ratio. T4 increased SEE by 4.1% and 8.5% during phases 1 and 2. Triac failed to induce the expected peripheral metabolic responses of the thyroid hormones, as demonstrated by an unchanged SEE and basal metabolic rate. These results clearly show a preferential action of Triac on TSH suppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in bone mineral density and bone strength following treatment with zoledronic acid (ZOL) were measured by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA). ZOL treatment increased spine and hip BMD vs placebo, assessed by QCT and DXA. Changes in trabecular bone resulted in increased bone strength. INTRODUCTION: To investigate bone mineral density (BMD) changes in trabecular and cortical bone, estimated by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA), and whether zoledronic acid 5 mg (ZOL) affects bone strength. METHODS: In 233 women from a randomized, controlled trial of once-yearly ZOL, lumbar spine, total hip, femoral neck, and trochanter were assessed by DXA and QCT (baseline, Month 36). Mean percentage changes from baseline and between-treatment differences (ZOL vs placebo, t-test) were evaluated. RESULTS: Mean between-treatment differences for lumbar spine BMD were significant by DXA (7.0%, p < 0.01) and QCT (5.7%, p < 0.0001). Between-treatment differences were significant for trabecular spine (p = 0.0017) [non-parametric test], trabecular trochanter (10.7%, p < 0.0001), total hip (10.8%, p < 0.0001), and compressive strength indices at femoral neck (8.6%, p = 0.0001), and trochanter (14.1%, p < 0.0001). CONCLUSIONS: Once-yearly ZOL increased hip and spine BMD vs placebo, assessed by QCT vs DXA. Changes in trabecular bone resulted in increased indices of compressive strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoarthritis (OA) is one of the major causes of pain and of outpatient's clinics. 15 years ago, physiopathology of OA and its potential therapeutic targets were announced to be better understood, but the results of therapeutic trials were finally not as convincing as expected. Slow Acting Drugs (SADs) are part of the treatments evaluated in OA. Even if evidence based medicine is low, positive effects of SADs have been observed. We can reasonably propose these treatments for a short test period. It can sometimes enable us to decrease the dosage of others treatment such as NSAIDs. In any case, the physician must properly inform the patient about products available in Switzerland and must be aware of degrees of purity and costs of the products available on the intemet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

5-aminosalicylic acid (5-ASA) is an antiinflammatory drug widely used in the treatment of inflammatory bowel diseases. It is known to inhibit the production of cytokines and inflammatory mediators, but the mechanism underlying the intestinal effects of 5-ASA remains unknown. Based on the common activities of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands and 5-ASA, we hypothesized that this nuclear receptor mediates 5-ASA therapeutic action. To test this possibility, colitis was induced in heterozygous PPAR-gamma(+/-) mice and their wild-type littermates, which were then treated with 5-ASA. 5-ASA treatment had a beneficial effect on colitis only in wild-type and not in heterozygous mice. In epithelial cells, 5-ASA increased PPAR-gamma expression, promoted its translocation from the cytoplasm to the nucleus, and induced a modification of its conformation permitting the recruitment of coactivators and the activation of a peroxisome-proliferator response element-driven gene. Validation of these results was obtained with organ cultures of human colonic biopsies. These data identify PPAR-gamma as a target of 5-ASA underlying antiinflammatory effects in the colon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are non-voltage-gated sodium channels activated by an extracellular acidification. They are widely expressed in neurons of the central and peripheral nervous system. ASICs have a role in learning, the expression of fear, in neuronal death after cerebral ischemia, and in pain sensation. Tissue damage leads to the release of inflammatory mediators. There is a subpopulation of sensory neurons which are able to release the neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP). Neurogenic inflammation refers to the process whereby peripheral release of the neuropeptides CGRP and SP induces vasodilation and extravasation of plasma proteins, respectively. Our laboratory has previously shown that calcium-permeable homomeric ASIC1a channels are present in a majority of CGRP- or SP-expressing small diameter sensory neurons. In the first part of my thesis, we tested the hypothesis that a local acidification can produce an ASIC-mediated calcium-dependant neuropeptide secretion. We have first verified the co-expression of ASICs and CGRP/SP using immunochemistry and in-situ hybridization on dissociated rat dorsal root ganglion (DRG) neurons. We found that most CGRP/SP-positive neurons also expressed ASIC1a and ASIC3 subunits. Calcium imaging experiments with Fura-2 dye showed that an extracellular acidification can induce an increase of intracellular Ca2+ concentration, which is essential for secretion. This increase of intracellular Ca2+ concentration is, at least in some cells, ASIC-dependent, as it can be prevented by amiloride, an ASIC antagonist, and by Psalmotoxin (PcTx1), a specific ASIC1a antagonist. We identified a sub-population of neurons whose acid-induced Ca2+ entry was completely abolished by amiloride, an amiloride-resistant population which does not express ASICs, but rather another acid-sensing channel, possibly transient receptor potential vanilloïde 1 (TRPV1), and a population expressing both H+-gated channel types. Voltage-gated calcium channels (Cavs) may also mediate Ca2+ entry. Co-application of the Cavs inhibitors (ω-conotoxin MVIIC, Mibefradil and Nifedipine) reduced the Ca2+ increase in neurons expressing ASICs during an acidification to pH 6. This indicates that ASICs can depolarise the neuron and activate Cavs. Homomeric ASIC1a are Ca2+-permeable and allow a direct entry of Ca2+ into the cell; other ASICs mediate an indirect entry of Ca2+ by inducing a membrane depolarisation that activates Cavs. We showed with a secretion assay that CGRP secretion can be induced by extracellular acidification in cultured rat DRG neurons. Amiloride and PcTx1 were not able to inhibit the secretion at acidic pH, but BCTC, a TRPV1 inhibitor was able to decrease the secretion induced by an extracellular acidification in our in vitro secretion assay. In conclusion, these results show that in DRG neurons a mild extracellular acidification can induce a calcium-dependent neuropeptide secretion. Even if our data show that ASICs can mediate an increase of intracellular Ca2+ concentration, this appears not to be sufficient to trigger neuropeptide secretion. TRPV1, a calcium channel whose activation induces a sustained current - in contrary of ASICs - played in our experimental conditions a predominant role in neurosecretion. In the second part of my thesis, we focused on the role of ASICs in neuropathic pain. We used the spared nerve injury (SNI) model which consists in a nerve injury that induces symptoms of neuropathic pain such as mechanical allodynia. We have previously shown that the SNI model modifies ASIC currents in dissociated rat DRG neurons. We hypothesized that ASICs could play a role in the development of mechanical allodynia. The SNI model was performed on ASIC1a, -2, and -3 knock-out mice and wild type littermates. We measured mechanical allodynia on these mice with calibrated von Frey filaments. There were no differences between the wild-type and the ASIC1, or ASIC2 knockout mice. ASIC3 null mice were less sensitive than wild type mice at 21 day after SNI, indicating a role for ASIC3. Finally, to investigate other possible roles of ASICs in the perception of the environment, we measured the baseline heat responses. We used two different models; the tail flick model and the hot plate model. ASIC1a null mice showed increased thermal allodynia behaviour in the hot plate test at three different temperatures (49, 52, 55°C) compared to their wild type littermates. On the contrary, ASIC2 null mice showed reduced thermal allodynia behaviour in the hot plate test compared to their wild type littermates at the three same temperatures. We conclude that ASIC1a and ASIC2 in mice can play a role in temperature sensing. It is currently not understood how ASICs are involved in temperature sensing and what the reason for the opposed effects in the two knockout models is.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Administration of 13-cis retinoic acid (isotretinoin) for acne is occasionally accompanied by hyperlipidemia. It is not known why some persons develop this side effect. OBJECTIVE: To determine whether isotretinoin triggers a familial susceptibility to hyperlipidemia and the metabolic syndrome. DESIGN: Cross-sectional comparison. SETTING: University hospital in Lausanne, Switzerland. PARTICIPANTS: 102 persons in whom triglyceride levels increased at least 1.0 mmol/L (> or =89 mg/dL) (hyperresponders) and 100 persons in whom triglyceride levels changed 0.1 mmol/L (< or =9 mg/dL) or less (nonresponders) during isotretinoin therapy for acne. Parents of 71 hyperresponders and 60 nonresponders were also evaluated. MEASUREMENTS: Waist-to-hip ratio; fasting glucose, insulin, and lipid levels; and apoE genotype. RESULTS: Hyperresponders and nonresponders had similar pretreatment body weight and plasma lipid levels. When reevaluated approximately 4 years after completion of isotretinoin therapy, hyperresponders were more likely to have hypertriglyceridemia (triglyceride level > 2.0 mmol/L [>177 mg/dL]; odds ratio [OR], 4.8 [95% CI, 1.6 to 13.8]), hypercholesterolemia (cholesterol level > 6.5 mmol/L [>252 mg/dL]; OR, 9.1 [CI, 1.9 to 43]), truncal obesity (waist-to-hip ratio > 0.90 [OR, 11.0 (CI, 2.0 to 59]), and hyperinsulinemia (insulin-glucose ratio > 7.2; OR, 3.0 [CI, 1.6 to 5.7]). In addition, more hyperresponders had at least one parent with hypertriglyceridemia (OR, 2.6 [CI, 1.2 to 5.7]) or a ratio of total to high-density lipoprotein cholesterol that exceeded 4.0 (OR, 3.5 [CI, 1.5 to 8.0]). Lipid response to isotretinoin was closely associated with the apoE gene. CONCLUSION: Persons who develop hypertriglyceridemia during isotretinoin therapy for acne, as well as their parents, are at increased risk for future hyperlipidemia and the metabolic syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Les canaux ioniques ASICs (acid-sensing ion channels) appartiennent à la famille des canaux ENaC/Degenerin. Pour l'instant, quatre gènes (1 à 4) ont été clonés dont certains présentent des variants d'épissage. Leur activation par une acidification rapide du milieu extracellulaire génère un courant entrant transitoire essentiellement sodique accompagné pour certains types d'ASICs d'une phase soutenue. Les ASICs sont exprimés dans le système nerveux, central (SNC) et périphérique (SNP). On leur attribue un rôle dans l'apprentissage, la mémoire et l'ischémie cérébrale au niveau central ainsi que dans la nociception (douleur aiguë et inflammatoire) et la méchanotransduction au niveau périphérique. Toutefois, les données sont parfois contradictoires. Certaines études suggèrent qu'ils sont des senseurs primordiaux impliqués dans la détection de l'acidification et la douleur. D'autres études suggèrent plutôt qu'ils ont un rôle modulateur inhibiteur dans la douleur. De plus, le fait que leur activation génère majoritairement un courant transitoire alors que les fibres nerveuses impliquées dans la douleur répondent à un stimulus nocif avec une adaptation lente suggère que leurs propriétés doivent être modulés par des molécules endogènes. Dans une première partie de ma thèse, nous avons abordé la question de l'expression fonctionnelle des ASICs dans les neurones sensoriels primaires afférents du rat adulte pour clarifier le rôle des ASICs dans les neurones sensoriels. Nous avons caractérisé leurs propriétés biophysiques et pharmacologiques par la technique du patch-clamp en configuration « whole-cell ». Nous avons pu démontrer que près de 60% des neurones sensoriels de petit diamètre expriment des courants ASICs. Nous avons mis en évidence trois types de courant ASIC dans ces neurones. Les types 1 et 3 ont des propriétés compatibles avec un rôle de senseur du pH alors que le type 2 est majoritairement activé par des pH inférieurs à pH6. Le type 1 est médié par des homomers de la sous-unité ASIC1 a qui sont perméables aux Ca2+. Nous avons étudié leur co-expression avec des marqueurs des nocicepteurs ainsi que la possibilité d'induire une activité neuronale suite à une acidification qui soit dépendante des ASICs. Le but était d'associer un type de courant ASIC avec une fonction potentielle dans les neurones sensoriels. Une majorité des neurones exprimant les courants ASIC co-expriment des marqueurs des nocicepteurs. Toutefois, une plus grande proportion des neurones exprimant le type 1 n'est pas associée à la nociception par rapport aux types 2 et 3. Nous avons montré qu'il est possible d'induire des potentiels d'actions suite à une acidification. La probabilité d'induction est proportionnelle à la densité des courants ASIC et à l'acidité de la stimulation. Puis, nous avons utilisé cette classification comme un outil pour appréhender les potentielles modulations fonctionnelles des ASICs dans un model de neuropathie (spared nerve injury). Cette approche fut complétée par des expériences de «quantitative RT-PCR ». En situation de neuropathie, les courants ASIC sont dramatiquement changés au niveau de leur expression fonctionnelle et transcriptionnelle dans les neurones lésés ainsi que non-lésés. Dans une deuxième partie de ma thèse, suite au test de différentes substances sécrétées lors de l'inflammation et l'ischémie sur les propriétés des ASICs, nous avons caractérisé en détail la modulation des propriétés des courants ASICs notamment ASIC1 par les sérines protéases dans des systèmes d'expression recombinants ainsi que dans des neurones d'hippocampe. Nous avons montré que l'exposition aux sérine-protéases décale la dépendance au pH de l'activation ainsi que la « steady-state inactivation »des ASICs -1a et -1b vers des valeurs plus acidiques. Ainsi, l'exposition aux serine protéases conduit à une diminution du courant quand l'acidification a lieu à partir d'un pH7.4 et conduit à une augmentation du courant quand l'acidification alleu à partir d'un pH7. Nous avons aussi montré que cette régulation a lieu des les neurones d'hippocampe. Nos résultats dans les neurones sensoriels suggèrent que certains courants ASICs sont impliqués dans la transduction de l'acidification et de la douleur ainsi que dans une des phases du processus conduisant à la neuropathie. Une partie des courants de type 1 perméables au Ca 2+ peuvent être impliqués dans la neurosécrétion. La modulation par les sérines protéases pourrait expliquer qu'en situation d'acidose les canaux ASICs soient toujours activables. Résumé grand publique Les neurones sont les principales cellules du système nerveux. Le système nerveux est formé par le système nerveux central - principalement le cerveau, le cervelet et la moelle épinière - et le système nerveux périphérique -principalement les nerfs et les neurones sensoriels. Grâce à leur nombreux "bras" (les neurites), les neurones sont connectés entre eux, formant un véritable réseau de communication qui s'étend dans tout le corps. L'information se propage sous forme d'un phénomène électrique, l'influx nerveux (ou potentiels d'actions). A la base des phénomènes électriques dans les neurones il y a ce que l'on appelle les canaux ioniques. Un canal ionique est une sorte de tunnel qui traverse l'enveloppe qui entoure les cellules (la membrane) et par lequel passent les ions. La plupart de ces canaux sont normalement fermés et nécessitent d'être activés pour s'ouvrire et générer un influx nerveux. Les canaux ASICs sont activés par l'acidification et sont exprimés dans tout le système nerveux. Cette acidification a lieu notamment lors d'une attaque cérébrale (ischémie cérébrale) ou lors de l'inflammation. Les expériences sur les animaux ont montré que les canaux ASICs avaient entre autre un rôle dans la mort des neurones lors d'une attaque cérébrale et dans la douleur inflammatoire. Lors de ma thèse je me suis intéressé au rôle des ASICs dans la douleur et à l'influence des substances produites pendant l'inflammation sur leur activation par l'acidification. J'ai ainsi pu montrer chez le rat que la majorité des neurones sensoriels impliqués dans la douleur ont des canaux ASICs et que l'activation de ces canaux induit des potentiels d'action. Nous avons opéré des rats pour qu'ils présentent les symptômes d'une maladie chronique appelée neuropathie. La neuropathie se caractérise par une plus grande sensibilité à la douleur. Les rats neuropathiques présentent des changements de leurs canaux ASICs suggérant que ces canaux ont une peut-être un rôle dans la genèse ou les symptômes de cette maladie. J'ai aussi montré in vitro qu'un type d'enryme produit lors de l'inflammation et l'ischémie change les propriétés des ASICs. Ces résultats confirment un rôle des ASICs dans la douleur suggérant notamment un rôle jusque là encore non étudié dans la douleur neuropathique. De plus, ces résultats mettent en évidence une régulation des ASICs qui pourrait être importante si elle se confirmait in vivo de part les différents rôles des ASICs. Abstract Acid-sensing ion channels (ASICs) are members of the ENaC/Degenerin superfamily of ion channels. Their activation by a rapid extracellular acidification generates a transient and for some ASIC types also a sustained current mainly mediated by Na+. ASICs are expressed in the central (CNS) and in the peripheral (PNS) nervous system. In the CNS, ASICs have a putative role in learning, memory and in neuronal death after cerebral ischemia. In the PNS, ASICs have a putative role in nociception (acute and inflammatory pain) and in mechanotransduction. However, studies on ASIC function are somewhat controversial. Some studies suggest a crucial role of ASICs in transduction of acidification and in pain whereas other studies suggest rather a modulatory inhibitory role of ASICs in pain. Moreover, the basic property of ASICs, that they are activated only transiently is irreconcilable with the well-known property of nociception that the firing of nociceptive fibers demonstrated very little adaptation. Endogenous molecules may exist that can modulate ASIC properties. In a first part of my thesis, we addressed the question of the functional expression of ASICs in adult rat dorsal root ganglion (DRG) neurons. Our goal was to elucidate ASIC roles in DRG neurons. We characterized biophysical and pharmacological properties of ASIC currents using the patch-clamp technique in the whole-cell configuration. We observed that around 60% of small-diameter sensory neurons express ASICs currents. We described in these neurons three ASIC current types. Types 1 and 3 have properties compatible with a role of pH-sensor whereas type 2 is mainly activated by pH lower than pH6. Type 1 is mediated by ASIC1a homomultimers which are permeable to Ca 2+. We studied ASIC co-expression with nociceptor markers. The goal was to associate an ASIC current type with a potential function in sensory neurons. Most neurons expressing ASIC currents co-expressed nociceptor markers. However, a higher proportion of the neurons expressing type 1 was not associated with nociception compared to type 2 and -3. We completed this approach with current-clamp measurements of acidification-induced action potentials (APs). We showed that activation of ASICs in small-diameter neurons can induce APs. The probability of AP induction is positively correlated with the ASIC current density and the acidity of stimulation. Then, we used this classification as a tool to characterize the potential functional modulation of ASICs in the spared nerve injury model of neuropathy. This approach was completed by quantitative RT-PCR experiments. ASICs current expression was dramatically changed at the functional and transcriptional level in injured and non-injured small-diameter DRG neurons. In a second part of my thesis, following an initial screening of the effect of various substances secreted during inflammation and ischemia on ASIC current properties, we characterized in detail the modulation of ASICs, in particular of ASIC1 by serine proteases in a recombinant expression system as well as in hippocampal neurons. We showed that protease exposure shifts the pH dependence of ASIC1 activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in the current response if ASIC1 is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provided evidence that this bi-directional regulation of ASIC1a function also occurs in hippocampal neurons. Our results in DRG neurons suggest that some ASIC currents are involved in the transduction of peripheral acidification and pain. Furthermore, ASICs may participate to the processes leading to neuropathy. Some Ca 2+-permeable type 1 currents may be involved in neurosecretion. ASIC modulation by serine proteases may be physiologically relevant, allowing ASIC activation under sustained slightly acidic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differentiation between photoallergenic and phototoxic reactions induced by low molecular weight compounds represents a current problem. The use of eratinocytes as a potential tool for the detection of photoallergens as opposed to photoirritants is considered an interesting strategy for developing in vitro methods. We have previously demonstrated the possibility to use the human keratinocyte cell line NCTC2455 and the production of interleukin-18 (IL-18) to screen low molecular weight sensitizers. The purpose of this work was to explore the possibility to use the NCTC2544 assay to identify photoallergens and discriminate from phototoxic chemicals. First, we identified suitable condition of UV-irradiation (3.5 J/cm2) by investigating the effect of UVAirradiation on intracellular IL-18 on untreated or chloropromazine (a representative phototoxic compound)- treated NCTC2544 cells. Then, the effect of UVA-irradiation over NCTC2544 cells treated with increasing concentrations of 15 compounds including photoallergens (benzophenone, 4-ter-butyl-4-methoxydibenzoylmethane, 2-ethylexyl-p-methoxycinnamate, ketoprofen, 6-methylcumarin); photoirritant and photoallergen (4-aminobenzoic acid, chlorpromazine, promethazine); photoirritants (acridine, ibuprofen, 8-methoxypsoralen, retinoic acid); and negative compounds (lactic acid, SDS and p-phenilendiamine) was investigated. Twenty-four hours after exposure, cytotoxicity was evaluated by the MTT assay or LDH leakage, while ELISA was used to measure the production of IL-18. At the maximal concentration assayed with non-cytotoxic effects (CV80 under irradiated condition), all tested photoallergens induced a significant and a dose-dependent increase of intracellular IL-18 following UVA irratiation, whereas photoirritants failed. We suggest that this system may be useful for the in vitro evaluation of the photoallergic potential of chemicals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dissolution test for in vitro evaluation of tablet dosage forms containing 10 mg of rupatadine was developed and validated by RP-LC. A discriminatory dissolution method was established using apparatus paddle at a stirring rate of 50 rpm with 900 mL of deaerated 0.01 M hydrochloric acid. The proposed method was validated yielding acceptable results for the parameters evaluated, and was applied for the quality control analysis of rupatadine tablets, and to evaluate the formulation during an accelerated stability study. Moreover, quantitative analyses were also performed, to compare the applicability of the RP-LC and the LC-MS/MS methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary, secondary and tertiary alcohols can be easily distinguished due to their reactivity towards tribromoisocyanuric acid (TBCA). The test is performed by adding TBCA to the alcohol in a test tube heated in a boiling water bath. Orange color develops in the tube containing the primary alcohol, light yellow is observed in the tube containing the secondary alcohol while the tertiary alcohol results in a colorless mixture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple, precise, specific, repeatable and discriminating dissolution test for primaquine (PQ) matrix tablets was developed and validated according to ICH and FDA guidelines. Two UV assaying methods were validated for determination of PQ released in 0.1 M hydrochloric acid and water media. Both methods were linear (R²>0.999), precise (R.S.D.<1.87%) and accurate (97.65-99.97%). Dissolution efficiency (69-88%) and equivalence of formulations (f2) was assessed in different media and apparatuses (basket/100 rpm and paddle/50 rpm) tested. Discriminating condition was 900 mL aqueous medium, basket at 100 rpm and sampling times at 1, 4 and 8 h. Repeatability (R.S.D.<2.71%) and intermediate precision (R.S.D.<2.06%) of dissolution method were satisfactory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pressor responses elicited by stimulation of the nucleus raphe obscurus (NRO) depend on the integrity of the rostral ventrolateral medulla (RVLM). Therefore, to test the participation of excitatory amino acid (EAA) receptors in the cardiovascular responses evoked by NRO stimulation (1 ms, 100 Hz, 40-70 µA, for 10 s), the EAA antagonist kynurenic acid (Kyn) was microinjected at different sites in the ventrolateral medullar surface (2.7 nmol/200 nl) of male Wistar rats (270-320 g, N = 39) and NRO stimulation was repeated. The effects of NRO stimulation were: hypertension (deltaMAP = +43 ± 1 mmHg, P<0.01), bradycardia (deltaHR = -30 ± 7 bpm, P<0.01) and apnea. Bilateral microinjection of Kyn into the RVLM, which did not change baseline parameters, almost abolished the bradycardia induced by NRO stimulation (deltaHR = -61 ± 3 before vs -2 ± 3 bpm after Kyn, P<0.01, N = 7). Unilateral microinjection of Kyn into the CVLM did not change baseline parameters or reduce the pressor response to NRO stimulation (deltaMAP = +46 ± 5 before vs +48 ± 5 mmHg after Kyn, N = 6). Kyn bilaterally microinjected into the caudal pressor area reduced blood pressure and heart rate and almost abolished the pressor response to NRO stimulation (deltaMAP = +46 ± 4 mmHg before vs +4 ± 2 mmHg after Kyn, P<0.01, N = 7). These results indicate that EAA receptors on the medullary ventrolateral surface play a role in the modulation of the cardiovascular responses induced by NRO stimulation, and also suggest that the RVLM participates in the modulation of heart rate responses and that the caudal pressor area modulates the pressor response following NRO stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our aim was to compare the clinical features of panic disorder (PD) patients sensitive to hyperventilation or breath-holding methods of inducing panic attacks. Eighty-five PD patients were submitted to both a hyperventilation challenge test and a breath-holding test. They were asked to hyperventilate (30 breaths/min) for 4 min and a week later to hold their breath for as long as possible, four times with a 2-min interval. Anxiety scales were applied before and after the tests. We selected the patients who responded with a panic attack to just one of the tests, i.e., those who had a panic attack after hyperventilating (HPA, N = 24, 16 females, 8 males, mean age ± SD = 38.5 ± 12.7 years) and those who had a panic attack after breath holding (BHPA, N = 20, 11 females, 9 males, mean age ± SD = 42.1 ± 10.6 years). Both groups had similar (chi² = 1.28, d.f. = 1, P = 0.672) respiratory symptoms (fear of dying, chest/pain disconfort, shortness of breath, paresthesias, and feelings of choking) during a panic attack. The criteria of Briggs et al. [British Journal of Psychiatry, 1993; 163: 201-209] for respiratory PD subtype were fulfilled by 18 (75.0%) HPA patients and by 14 (70.0%) BHPA patients. The HPA group had a later onset of the disease compared to BHPA patients (37.9 ± 11.0 vs 21.3 ± 12.9 years old, Mann-Whitney, P < 0.001), and had a higher family prevalence of PD (70.8 vs 25.0%, chi² = 19.65, d.f. = 1, P = 0.041). Our data suggest that these two groups - HPA and BHPA patients - may be specific subtypes of PD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Limited evidence is available regarding antiretroviral (ARV) safety for uninfected infants exposed to these drugs in utero. Our objective was to determine if ARV administered to pregnant women is associated with decreasing umbilical arterial pH and base excess in uninfected infants. A prospective study was conducted on 57 neonates divided into three groups: ZDV group, born to mothers taking zidovudine (N = 20), triple therapy (TT) group, born to mothers taking zidovudine + lamivudine + nelfinavir (N = 25), and control group (N = 12), born to uninfected mothers. Umbilical cord blood was used to determine umbilical artery gases. A test was performed to calculate the sample by comparing means by the unpaired one-tailed t-test, with a = 0.05 and ß = 20%, indicating the need for a sample of 18 newborn infants for the study groups to detect differences higher than 20%. The control and ARV groups were similar in gestational age, birth weight, and Apgar scores. Values of pH, pCO2, bicarbonate, and base excess in cord arterial blood obtained at delivery from the newborns exposed to TT were 7.23, 43.2 mmHg, 19.5 mEq/L, and -8.5 nmol/L, respectively, with no significant difference compared to the control and ZDV groups. We conclude that intrauterine exposure to ARV is not associated with a pathological decrease in umbilical arterial pH or base excess. While our data are reassuring, follow-up is still limited and needs to be continued into adulthood because of the possible potential for adverse effects of triple antiretroviral agents.