784 resultados para ABC Classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the signals captured during impacts and vibrations of a mechanical manipulator. To test the impacts, a flexible beam is clamped to the end-effector of a manipulator that is programmed in a way such that the rod moves against a rigid surface. Eighteen signals are captured and theirs correlation are calculated. A sensor classification scheme based on the multidimensional scaling technique is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Behavioral biometrics is one of the areas with growing interest within the biosignal research community. A recent trend in the field is ECG-based biometrics, where electrocardiographic (ECG) signals are used as input to the biometric system. Previous work has shown this to be a promising trait, with the potential to serve as a good complement to other existing, and already more established modalities, due to its intrinsic characteristics. In this paper, we propose a system for ECG biometrics centered on signals acquired at the subject's hand. Our work is based on a previously developed custom, non-intrusive sensing apparatus for data acquisition at the hands, and involved the pre-processing of the ECG signals, and evaluation of two classification approaches targeted at real-time or near real-time applications. Preliminary results show that this system leads to competitive results both for authentication and identification, and further validate the potential of ECG signals as a complementary modality in the toolbox of the biometric system designer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crossed classification models are applied in many investigations taking in consideration the existence of interaction between all factors or, in alternative, excluding all interactions, and in this case only the effects and the error term are considered. In this work we use commutative Jordan algebras in the study of the algebraic structure of these designs and we use them to obtain similar designs where only some of the interactions are considered. We finish presenting the expressions of the variance componentes estimators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation for a Masters Degree in Computer and Electronic Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis submitted to the Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Information Management – Geographic Information Systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi quantification (SQ) in DaTScan® studies is broadly used in clinic daily basis, however there is a suspicious about its discriminative capability, and concordance with the diagnostic classification performed by the physician. Aim: Evaluate the discriminate capability of an adapted database and reference's values of healthy controls for the Dopamine Transporters (DAT) with 123I–FP-IT named DBRV adapted to Nuclear Medicine Department's protocol and population of Infanta Cristina's Hospital, and its concordance with the physician classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Journal of Bacteriology (Out 2010) 5312-5318

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we assess the performance of information-theoretic inspired risks functionals in multilayer perceptrons with reference to the two most popular ones, Mean Square Error and Cross-Entropy. The information-theoretic inspired risks, recently proposed, are: HS and HR2 are, respectively, the Shannon and quadratic Rényi entropies of the error; ZED is a risk reflecting the error density at zero errors; EXP is a generalized exponential risk, able to mimic a wide variety of risk functionals, including the information-thoeretic ones. The experiments were carried out with multilayer perceptrons on 35 public real-world datasets. All experiments were performed according to the same protocol. The statistical tests applied to the experimental results showed that the ubiquitous mean square error was the less interesting risk functional to be used by multilayer perceptrons. Namely, mean square error never achieved a significantly better classification performance than competing risks. Cross-entropy and EXP were the risks found by several tests to be significantly better than their competitors. Counts of significantly better and worse risks have also shown the usefulness of HS and HR2 for some datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We define families of aperiodic words associated to Lorenz knots that arise naturally as syllable permutations of symbolic words corresponding to torus knots. An algorithm to construct symbolic words of satellite Lorenz knots is defined. We prove, subject to the validity of a previous conjecture, that Lorenz knots coded by some of these families of words are hyperbolic, by showing that they are neither satellites nor torus knots and making use of Thurston's theorem. Infinite families of hyperbolic Lorenz knots are generated in this way, to our knowledge, for the first time. The techniques used can be generalized to study other families of Lorenz knots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arguably, the most difficult task in text classification is to choose an appropriate set of features that allows machine learning algorithms to provide accurate classification. Most state-of-the-art techniques for this task involve careful feature engineering and a pre-processing stage, which may be too expensive in the emerging context of massive collections of electronic texts. In this paper, we propose efficient methods for text classification based on information-theoretic dissimilarity measures, which are used to define dissimilarity-based representations. These methods dispense with any feature design or engineering, by mapping texts into a feature space using universal dissimilarity measures; in this space, classical classifiers (e.g. nearest neighbor or support vector machines) can then be used. The reported experimental evaluation of the proposed methods, on sentiment polarity analysis and authorship attribution problems, reveals that it approximates, sometimes even outperforms previous state-of-the-art techniques, despite being much simpler, in the sense that they do not require any text pre-processing or feature engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada ao Instituto Superior de Administração e Contabilidade do Porto para obtenção do Grau de Mestre em Logística Orientada por: Professora Doutora Maria Clara Rodrigues Bento Vaz Fernandes