938 resultados para 3-dimensional ultrasonography


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article introduces a new method for 3-dimensional dental cast analysis, by using a mechanical 3-dimensional digitizer, MicroScribe 3DX (Immersion, San Jose, Calif), and TIGARO software (not yet released, but available from the author at hayasaki@dent.kyushu-u.ac.jp). By digitizing points on the model, multiple measurements can be made, including tooth dimensions; arch length, width, and perimeter; curve of Spee; overjet and overbite; and anteroposterior discrepancy. The bias of the system can be evaluated by comparing the distance between 2 points as determined by the new system and as measured with digital calipers. Fifteen pairs of models were measured digitally and manually, and the bias was evaluated by comparing the variances of both methods and checking for the type of error obtained by each method. No systematic errors were found. The results showed that the method is accurate, and it can be applied to both clinical practice and research. Copyright © 2005 by the American Association of Orthodontists.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the boundary of the 3-dimensional Rauzy fractal ε ⊂ ℝ×ℂ generated by the polynomial P(x) Dx 4-x 3-x 2-x-1. The finite automaton characterizing the boundary of ε is given explicitly. As a consequence we prove that the set ε has 18 neighboors where 6 of them intersect the central tile ε in a point. Our construction shows that the boundary is generated by an iterated function system starting with 2 compact sets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to evaluate stress distribution on the pen-implant bone, simulating the influence of Nobel Select implants with straight or angulated abutments on regular and switching platform in the anterior maxilla, by means of 3-dimensional finite element analysis. Four mathematical models of a central incisor supported by external hexagon implant (13 mm x 5 mm) were created varying the platform (R, regular or S. switching) and the abutments (S, straight or A, angulated 15 degrees). The models were created by using Mimics 13 and Solid Works 2010 software programs. The numerical analysis was performed using ANSYS Workbench 10.0. Oblique forces (100 N) were applied to the palatine surface of the central incisor. The bone/implant interface was considered perfectly integrated. Maximum (sigma(max)) and minimum (sigma(min)) principal stress values were obtained. For the cortical bone the highest stress values (sigma(max)) were observed in the RA (regular platform and angulated abutment, 51 MPa), followed by SA (platform switching and angulated abutment, 44.8 MPa), RS (regular platform and straight abutment, 38.6 MPa) and SS (platform switching and straight abutment, 36.5 MPa). For the trabecular bone, the highest stress values (sigma(max)) were observed in the RA (6.55 MPa), followed by RS (5.88 MPa), SA (5.60 MPa), and SS (4.82 MPa). The regular platform generated higher stress in the cervical periimplant region on the cortical and trabecular bone than the platform switching, irrespective of the abutment used (straight or angulated).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives-The purpose of this study was to evaluate the association between placental volumes, placental vascularity, and hypertensive disorders in pregnancy.Methods A prospective case-control study was conducted between April 2011 and July 2012. Placental volumes and vascularity were evaluated by 3-dimensional sonographic, 3-dimensional power Doppler histographic, and 2-dimensional color Doppler studies. Pregnant women were classified as normotensive or hypertensive and stratified by the nature of their hypertensive disorders. The following variables were evaluated: observed-to-expected placental volume ratio, placental volume-to-estimated fetal weight ratio, placental vascular indices, and pulsatility indices of the right and left uterine and umbilical arteries.Results Sixty-six healthy pregnant women and 62 pregnant women with hypertensive disorders were evaluated (matched by maternal age, gestational age at sonography, and parity). Placental volumes were not reduced in pregnancy in women with hypertensive disorders (P > .05). Conversely, reduced placental vascularization indices (vascularization index and vascularization-flow index) were observed in pregnancies complicated by hypertensive disorders (P < .01; P < .01), especially in patients with superimposed preeclampsia (P = .04; P = .02). A weak correlation was observed between placental volumes, placental vascular indices, and Doppler studies of the uterine and umbilical arteries.Conclusions Pregnancies complicated by hypertensive disorders are associated with reduced placental vascularity but not with reduced placental volumes. These findings are independent of changes in uterine artery Doppler studies. Future studies of the prediction of preeclampsia may focus on placental vascularity in combination with results of Doppler studies of the uterine arteries.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To prospectively evaluate a 3-dimensional spoiled gradient-dual-echo (3D SPGR-DE) magnetic resonance imaging (MRI) sequence for the qualitative and quantitative analysis of liver fat content (LFC) in patients with the suspicion of fatty liver disease using histopathology as the standard of reference.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: To determine the association between the 3-dimensional (3-D) motion pattern of the caudal lumbar and lumbosacral portions of the canine vertebral column and the morphology of vertebrae, facet joints, and intervertebral disks. SAMPLE POPULATION: Vertebral columns of 9 German Shepherd Dogs and 16 dogs of other breeds with similar body weights and body conditions. PROCEDURE: Different morphometric parameters of the vertebral column were assessed by computed tomography (CT) and magnetic resonance imaging. Anatomic conformation and the 3-D motion pattern were compared, and correlation coefficients were calculated. RESULTS: Total range of motion for flexion and extension was mainly associated with the facet joint angle, the facet joint angle difference between levels of the vertebral column in the transverse plane on CT images, disk height, and lever arm length. CONCLUSIONS AND CLINICAL RELEVANCE: Motion is a complex process that is influenced by the entire 3-D conformation of the lumbar portion of the vertebral column. In vivo dynamic measurements of the 3-D motion pattern of the lumbar and lumbosacral portions of the vertebral column will be necessary to further assess biomechanics that could lead to disk degeneration in dogs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVES: To assess magnetic resonance (MR)-colonography (MRC) for detection of colorectal lesions using two different T1w three-dimensional (3D)-gradient-recalled echo (GRE)-sequences and integrated parallel data acquisition (iPAT) at a 3.0 Tesla MR-unit. MATERIALS AND METHODS: In this prospective study, 34 symptomatic patients underwent dark lumen MRC at a 3.0 Tesla unit before conventional colonoscopy (CC). After colon distension with tap water, 2 high-resolution T1w 3D-GRE [3-dimensional fast low angle shot (3D-FLASH), iPAT factor 2 and 3D-volumetric interpolated breathhold examination (VIBE), iPAT 3] sequences were acquired without and after bolus injection of gadolinium. Prospective evaluation of MRC was performed. Image quality of the different sequences was assessed qualitatively and quantitatively. The findings of the same day CC served as standard of reference. RESULTS: MRC identified all polyps >5 mm (16 of 16) in size and all carcinomas (4 of 4) correctly. Fifty percent of the small polyps 0.6). CONCLUSIONS: MRC using 3D-GRE-sequences and iPAT is feasible at 3.0 T-systems. The high-resolution 3D-FLASH was slightly preferred over the 3D-VIBE because of better image quality, although both used sequences showed no statistical significant difference.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION In this in-vitro study, we aimed to investigate the predictability of the expected amount of stripping using 3 common stripping devices on premolars. METHODS One hundred eighty extracted premolars were mounted and aligned in silicone. Tooth mobility was tested with Periotest (Medizintechnik Gulden, Modautal, Germany) (8.3 ± 2.8 units). The selected methods for interproximal enamel reduction were hand-pulled strips (Horico, Hapf Ringleb & Company, Berlin, Germany), oscillating segmental disks (O-drive-OD 30; KaVo Dental, Biberach, Germany), and motor-driven abrasive strips (Orthofile; SDC Switzerland, Lugano-Grancia, Switzerland). With each device, the operator intended to strip 0.1, 0.2, 0.3, or 0.4 mm on the mesial side of 15 teeth. The teeth were scanned before and after stripping with a 3-dimensional laser scanner. Superposition and measurement of stripped enamel on the most mesial point of the tooth were conducted with Viewbox software (dHal Software, Kifissia, Greece). The Wilcoxon signed rank test and the Kruskal-Wallis test were applied; statistical significance was set at alpha ≤ 0.05. RESULTS Large variations between the intended and the actual amounts of stripped enamel, and between stripping procedures, were observed. Significant differences were found at 0.1 mm of intended stripping (P ≤ 0.05) for the hand-pulled method and at 0.4 mm of intended stripping (P ≤ 0.001 to P = 0.05) for all methods. For all scenarios of enamel reduction, the actual amount of stripping was less than the predetermined and expected amount of stripping. The Kruskal-Wallis analysis showed no significant differences between the 3 methods. CONCLUSIONS There were variations in the stripped amounts of enamel, and the stripping technique did not appear to be a significant predictor of the actual amount of enamel reduction. In most cases, actual stripping was less than the intended amount of enamel reduction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the cerebral cortex, most synapses are found in the neuropil, but relatively little is known about their 3-dimensional organization. Using an automated dual-beam electron microscope that combines focused ion beam milling and scanning electron microscopy, we have been able to obtain 10 three-dimensional samples with an average volume of 180 µm(3) from the neuropil of layer III of the young rat somatosensory cortex (hindlimb representation). We have used specific software tools to fully reconstruct 1695 synaptic junctions present in these samples and to accurately quantify the number of synapses per unit volume. These tools also allowed us to determine synapse position and to analyze their spatial distribution using spatial statistical methods. Our results indicate that the distribution of synaptic junctions in the neuropil is nearly random, only constrained by the fact that synapses cannot overlap in space. A theoretical model based on random sequential absorption, which closely reproduces the actual distribution of synapses, is also presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUÇÃO: A restrição de crescimento fetal (RCF) representa uma das principais complicações da gravidez e está associada a elevadas taxas de morbimortalidade perinatal. A frequência de desfechos desfavoráveis neonatais está diretamente relacionada à gravidade da RCF, sendo que os casos de pior evolução estão relacionados com peso abaixo do percentil 3. O mecanismo do crescimento fetal não está totalmente esclarecido, mas resulta da interação entre potencial genético de crescimento e fatores placentários, maternos e ambientais. Dentre os fatores etiológicos, o desenvolvimento anormal da placenta e a diminuição da perfusão uteroplacentária são as principais causas de RCF. Este estudo teve por objetivo avaliar volume e índices de vascularização placentários, por meio da ultrassonografia tridimensional (US3D), em gestações com RCF grave, e as correlações dos parâmetros placentários com valores de normalidade e dopplervelocimetria materno-fetal. MÉTODOS: Foram avaliadas 27 gestantes cujos fetos apresentavam peso estimado abaixo do percentil 3 para a idade gestacional. Por meio da US3D, utilizando-se a técnica VOCAL, foram mensurados o volume placentário (VP) e os índices vasculares: índice de vascularização (IV), índice de fluxo (IF) e índice de vascularização e fluxo (IVF). Os dados foram comparados com a curva de normalidade para a idade gestacional e peso fetal descrita por De Paula e cols. (2008, 2009). Desde que os volumes placentários variam durante a gravidez, os valores observados foram comparados com os valores esperados para a idade gestacional e peso fetal. Foram criados os índices volume observado/ esperado para a idade gestacional (Vo/e IG) e volume placentário observado/ esperado para o peso fetal (Vo/e PF). Os parâmetros placentários foram correlacionados com índice de pulsatilidade (IP) médio de (AUt) e IP de artéria umbilical (AU), e avaliados segundo a presença de incisura protodiastólica bilateral em AUt. RESULTADOS: Quando comparadas à curva de normalidade, as placentas de gestação com RCF grave apresentaram VP, IV, IF e IVF significativamente menores (p < 0,0001 para todos os parâmetros). Houve correlação inversa estatisticamente significante da média do PI de AUt com o Vo/e IG (r= -0,461, p= 0,018), IV (r= -0,401, p= 0,042) e IVF (r= -0,421, p= 0,048). No grupo de gestantes que apresentavam incisura protodiastólica bilateral de artérias uterinas, Vo/e IG (p= 0,014), Vo/e PF (p= 0,02) e IV (p= 0,044) foram significativamente mais baixos. Nenhum dos parâmetros placentários apresentou correlação significativa com IP de AU. CONCLUSÕES: Observou-se que o volume e os índices de vascularização placentários apresentam-se diminuídos nos fetos com RCF grave. IP médio de AUT apresenta correlação negativa com Vo/e IG, IV e IVF, e Vo/e IG, Vo/e PF e IV apresentaram-se reduzidos nos casos de incisura bilateral. Não houve correlação significativa dos parâmetros placentários com IP de AU

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently, a 3-dimensional phantom that can provide a comprehensive, accurate and complete measurement of the geometric distortion in MRI has been developed. In this paper, a scheme for characterizing the measured geometric distortion using the 3-D phantom is described. In the proposed scheme, a number of quantitative measures are developed and used to characterize the geometric distortion. These measures encompass the overall and spatial aspects of the geometric distortion. Two specific types of volume of interest, rectangular parallelepipeds (including cubes) and spheres are considered in the proposed scheme. As an illustration, characterization of the geometric distortion in a Siemens 1.5T Sonata MRI system using the proposed scheme is presented. As shown, the proposed scheme provides a comprehensive assessment of the geometric distortion. The scheme can be potentially used as a standard procedure for the assessment of geometric distortion in MRI. (C) 2004 American Association of Physicists in Medicine.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: Left atrial (LA) volume (LAV) is a prognostically important biomarker for diastolic dysfunction, but its reproducibility on repeated testing is not well defined. LA assessment with 3-dimensional. (3D) echocardiography (3DE) has been validated against magnetic resonance imaging, and we sought to assess whether this was superior to existing measurements for sequential echocardiographic follow-up. Methods: Patients (n = 100; 81 men; age 56 +/- 14 years) presenting for LA evaluation were studied with M-mode (MM) echocardiography, 2-dimensional (2D) echocardiography, and 3DE. Test-retest variation was performed by a complete restudy by a separate sonographer within 1 hour without alteration of hemodynamics or therapy. In all, 20 patients were studied for interobserver and intraobserver variation. LAVs were calculated by using M-mode diameter and planimetered atrial area in the apical. 4-chamber view to calculate an assumed sphere, as were prolate ellipsoid, Simpson's biplane, and biplane area-length methods. All were compared with 3DE. Results: The average LAV was 72 +/- 27 mL by 3DE. There was significant underestimation of LAV by M-mode (35 +/- 20 mL, r = 0.66, P < .01). The 3DE and various 2D echocardiographic techniques were well correlated: LA planimetry (85 +/- 38 mL, r = 0.77, P < .01), prolate ellipsoid (73 +/- 36 mL, r = 0.73, P = .04), area-length (64 +/- 30 mL, r = 0.74, P < .01), and Simpson's biplane (69 +/- 31 mL, r = 0.78, P = .06). Test-retest variation for 3DE was most favorable (r = 0.98, P < .01), with the prolate ellipsoid method showing most variation. Interobserver agreement between measurements was best for 3DE (r = 0.99, P < .01), with M-mode the worst (r = 0.89, P < .01). Intraobserver results were similar to interobserver, the best correlation for 3DE (r = 0.99, P < .01), with LA planimetry the worst (r = 0.91, P < .01). Conclusions. The 2D measurements correlate closely with 3DE. Follow-up assessment in daily practice appears feasible and reliable with both 2D and 3D approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a biventricular model, which couples the electrical and mechanical properties of the heart, and computer simulations of ventricular wall motion and deformation by means of a biventricular model. In the constructed electromechanical model, the mechanical analysis was based on composite material theory and the finite-element method; the propagation of electrical excitation was simulated using an electrical heart model, and the resulting active forces were used to calculate ventricular wall motion. Regional deformation and Lagrangian strain tensors were calculated during the systole phase. Displacements, minimum principal strains and torsion angle were used to describe the motion of the two ventricles. The simulations showed that during the period of systole, (1) the right ventricular free wall moves towards the septum, and at the same time, the base and middle of the free wall move towards the apex, which reduces the volume of the right ventricle; the minimum principle strain (E3) is largest at the apex, then at the middle of the free wall and its direction is in the approximate direction of the epicardial muscle fibres; (2) the base and middle of the left ventricular free wall move towards the apex and the apex remains almost static; the torsion angle is largest at the apex; the minimum principle strain E3 is largest at the apex and its direction on the surface of the middle wall of the left ventricle is roughly in the fibre orientation. These results are in good accordance with results obtained from MR tagging images reported in the literature. This study suggests that such an electromechanical biventricular model has the potential to be used to assess the mechanical function of the two ventricles, and also could improve the accuracy ECG simulation when it is used in heart torso model-based body surface potential simulation studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[μ-Tris(1,4-bis(tetrazol-1-yl)butane-N4,N4‘)iron(II)] bis(hexafluorophosphate), [Fe(btzb)3](PF6)2, crystallizes in a three-dimensional 3-fold interlocked structure featuring a sharp two-step spin-crossover behavior. The spin conversion takes place between 164 and 182 K showing a discontinuity at about T1/2 = 174 K and a hysteresis of about 4 K between T1/2 and the low-spin state. The spin transition has been independently followed by magnetic susceptibility measurements, 57Fe-Mössbauer spectroscopy, and variable temperature far and midrange FTIR spectroscopy. The title compound crystallizes in the trigonal space group P30¯(No. 147) with a unit cell content of one formula unit plus a small amount of disordered solvent. The lattice parameters were determined by X-ray diffraction at several temperatures between 100 and 300 K. Complete crystal structures were resolved for 9 of these temperatures between 100 (only low spin, LS) and 300 K (only high spin, HS), Z = 1 [Fe(btzb)3](PF  6)2:  300 K (HS), a = 11.258(6) Å, c = 8.948(6) Å, V = 982.2(10) Å3; 100 K (LS), a = 10.989(3) Å, c = 8.702(2) Å, V = 910.1(4) Å3. The molecular structure consists of octahedral coordinated iron(II) centers bridged by six N4,N4‘ coordinating bis(tetrazole) ligands to form three 3-dimensional networks. Each of these three networks is symmetry related and interpenetrates each other within a unit cell to form the interlocked structure. The Fe−N bond lengths change between 1.993(1) Å at 100 K in the LS state and 2.193(2) Å at 300 K in the HS state. The nearest Fe separation is along the c-axis and identical with the lattice parameter c.