993 resultados para 290803 Transport Engineering
Resumo:
System analysis within the traction power system is vital to the design and operation of an electrified railway. Loads in traction power systems are often characterised by their mobility, wide range of power variations, regeneration and service dependence. In addition, the feeding systems may take different forms in AC electrified railways. Comprehensive system studies are usually carried out by computer simulation. A number of traction power simulators have been available and they allow calculation of electrical interaction among trains and deterministic solutions of the power network. In the paper, a different approach is presented to enable load-flow analysis on various feeding systems and service demands in AC railways by adopting probabilistic techniques. It is intended to provide a different viewpoint to the load condition. Simulation results are given to verify the probabilistic-load-flow models.
Resumo:
Open access reforms to railway regulations allow multiple train operators to provide rail services on a common infrastructure. As railway operations are now independently managed by different stakeholders, conflicts in operations may arise, and there have been attempts to derive an effective access charge regime so that these conflicts may be resolved. One approach is by direct negotiation between the infrastructure manager and the train service providers. Despite the substantial literature on the topic, few consider the benefits of employing computer simulation as an evaluation tool for railway operational activities such as access pricing. This article proposes a multi-agent system (MAS) framework for the railway open market and demonstrates its feasibility by modelling the negotiation between an infrastructure provider and a train service operator. Empirical results show that the model is capable of resolving operational conflicts according to market demand.
Resumo:
The railway service is now the major transportation means in most of the countries around the world. With the increasing population and expanding commercial and industrial activities, a high quality of railway service is the most desirable. Train service usually varies with the population activities throughout a day and train coordination and service regulation are then expected to meet the daily passengers' demand. Dwell time control at stations and fixed coasting point in an inter-station run are the current practices to regulate train service in most metro railway systems. However, a flexible and efficient train control and operation is not always possible. To minimize energy consumption of train operation and make certain compromises on the train schedule, coast control is an economical approach to balance run-time and energy consumption in railway operation if time is not an important issue, particularly at off-peak hours. The capability to identify the starting point for coasting according to the current traffic conditions provides the necessary flexibility for train operation. This paper presents an application of genetic algorithms (GA) to search for the appropriate coasting point(s) and investigates the possible improvement on fitness of genes. Single and multiple coasting point control with simple GA are developed to attain the solutions and their corresponding train movement is examined. Further, a hierarchical genetic algorithm (HGA) is introduced here to identify the number of coasting points required according to the traffic conditions, and Minimum-Allele-Reserve-Keeper (MARK) is adopted as a genetic operator to achieve fitter solutions.
Resumo:
The concept of moving block signallings (MBS) has been adopted in a few mass transit railway systems. When a dense queue of trains begins to move from a complete stop, the trains can re-start in very close succession under MBS. The feeding substations nearby are likely to be overloaded and the service will inevitably be disturbed unless substations of higher power rating are used. By introducing starting time delays among the trains or limiting the trains’ acceleration rate to a certain extent, the peak energy demand can be contained. However, delay is introduced and quality of service is degraded. An expert system approach is presented to provide a supervisory tool for the operators. As the knowledge base is vital for the quality of decisions to be made, the study focuses on its formulation with a balance between delay and peak power demand.
Resumo:
Traffic conflicts at railway junctions are very conmon, particularly on congested rail lines. While safe passage through the junction is well maintained by the signalling and interlocking systems, minimising the delays imposed on the trains by assigning the right-of-way sequence sensibly is a bonus to the quality of service. A deterministic method has been adopted to resolve the conflict, with the objective of minimising the total weighted delay. However, the computational demand remains significant. The applications of different heuristic methods to tackle this problem are reviewed and explored, elaborating their feasibility in various aspects and comparing their relative merits for further studies. As most heuristic methods do not guarantee a global optimum, this study focuses on the trade-off between computation time and optimality of the resolution.
Resumo:
Conflict occurs when two or more trains approach the same junction within a specified time. Such conflicts result in delays. Current practices to assign the right of way at junctions achieve orderly and safe passage of the trains, but do not attempt to reduce the delays. A traffic controller developed in the paper assigns right of way to impose minimum total weighted delay on the trains. The traffic flow model and the optimisation technique used in this controller are described. Simulation studies of the performance of the controller are given.
Resumo:
Fuzzy logic has been applied to control traffic at road junctions. A simple controller with one fixed rule-set is inadequate to minimise delays when traffic flow rate is time-varying and likely to span a wide range. To achieve better control, fuzzy rules adapted to the current traffic conditions are used.
Resumo:
In general, simple and traditional methods are applied to resolve traffic conflicts at railway junctions. They are, however, either inefficient or computationally demanding. A simple genetic algorithm is presented to enable a search for a near optimal resolution to be carried out while meeting the constraints on generation evolution and minimising the search time.
Resumo:
High reliability of railway power systems is one of the essential criteria to ensure quality and cost-effectiveness of railway services. Evaluation of reliability at system level is essential for not only scheduling maintenance activities, but also identifying reliability-critical components. Various methods to compute reliability on individual components or regularly structured systems have been developed and proven to be effective. However, they are not adequate for evaluating complicated systems with numerous interconnected components, such as railway power systems, and locating the reliability critical components. Fault tree analysis (FTA) integrates the reliability of individual components into the overall system reliability through quantitative evaluation and identifies the critical components by minimum cut sets and sensitivity analysis. The paper presents the reliability evaluation of railway power systems by FTA and investigates the impact of maintenance activities on overall reliability. The applicability of the proposed methods is illustrated by case studies in AC railways.
Resumo:
An electrified railway system includes complex interconnections and interactions of several subsystems. Computer simulation is the only viable means for system evaluation and analysis. This paper discusses the difficulties and requirements of effective simulation models for this specialized industrial application; and the development of a general-purpose multi-train simulator.
Resumo:
Robustness of the track allocation problem is rarely addressed in literatures and the obtained track allocation schemes (TAS) embody some bottlenecks. Therefore, an approach to detect bottlenecks is needed to support local optimization. First a TAS is transformed to an executable model by Petri nets. Then disturbances analysis is performed using the model and the indicators of the total trains' departure delays are collected to detect bottlenecks when each train suffers a disturbance. Finally, the results of the tests based on a rail hub linking six lines and a TAS about thirty minutes show that the minimum buffer time is 21 seconds and there are two bottlenecks where the buffer times are 57 and 44 seconds respectively, and it indicates that the bottlenecks do not certainly locate at the area where there is minimum buffer time. The proposed approach can further support selection of multi schemes and robustness optimization.
Resumo:
Condition monitoring on rails and train wheels is vitally important to the railway asset management and the rail-wheel interactions provide the crucial information of the health state of both rails and wheels. Continuous and remote monitoring is always a preference for operators. With a new generation of strain sensing devices in Fibre Bragg Grating (FBG) sensors, this study explores the possibility of continuous monitoring of the health state of the rails; and investigates the required signal processing techniques and their limitations.
Resumo:
Maintenance activities in a large-scale engineering system are usually scheduled according to the lifetimes of various components in order to ensure the overall reliability of the system. Lifetimes of components can be deduced by the corresponding probability distributions with parameters estimated from past failure data. While failure data of the components is not always readily available, the engineers have to be content with the primitive information from the manufacturers only, such as the mean and standard deviation of lifetime, to plan for the maintenance activities. In this paper, the moment-based piecewise polynomial model (MPPM) are proposed to estimate the parameters of the reliability probability distribution of the products when only the mean and standard deviation of the product lifetime are known. This method employs a group of polynomial functions to estimate the two parameters of the Weibull Distribution according to the mathematical relationship between the shape parameter of two-parameters Weibull Distribution and the ratio of mean and standard deviation. Tests are carried out to evaluate the validity and accuracy of the proposed methods with discussions on its suitability of applications. The proposed method is particularly useful for reliability-critical systems, such as railway and power systems, in which the maintenance activities are scheduled according to the expected lifetimes of the system components.
Resumo:
Signalling layout design is one of the keys to railway operations with fixed-block signalling system and it also carries direct effect on overall train efficiency and safety. Based on an analysis to system objectives, this paper presents an optimization model with two objectives in order to devise an efficient signalling layout scheme. Taking into account the present railway line design practices in China, the paper describes steps of the computer-based signalling layout optimisation with real-coded genetic algorithms. A computer-aided system, based on train movement simulator, has also been employed to assist the optimisation process. A case study on a practical railway line has been conducted to make comparisons between the proposed GA-based approach and the current practices. The results illustrate the improved performance of the proposed approach in reducing signal block joints and shortening minimum train service headway.
Resumo:
Railway signaling facilitates two main functions, namely, train detection and train control, in order to maintain safe separations among the trains. Track circuits are the most commonly used train detection means with the simple open/close circuit principles; and subsequent adoption of axle counters further allows the detection of trains under adverse track conditions. However, with electrification and power electronics traction drive systems, aggravated by the electromagnetic interference in the vicinity of the signaling system, railway engineers often find unstable or even faulty operations of track circuits and axle counting systems, which inevitably jeopardizes the safe operation of trains. A new means of train detection, which is completely free from electromagnetic interference, is therefore required for the modern railway signaling system. This paper presents a novel optical fiber sensor signaling system. The sensor operation, field setup, axle detection solution set, and test results of an installation in a trial system on a busy suburban railway line are given.