941 resultados para 290601 Chemical Engineering Design


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducing a "Cheaper, Faster, Better" product in today's highly competitive market is a challenging target. Therefore, for organizations to improve their performance in this area, they need to adopt methods such as process modelling, risk mitigation and lean principles. Recently, several industries and researchers focused efforts on transferring the value orientation concept to other phases of the Product Life Cycle (PLC) such as Product Development (PD), after its evident success in manufacturing. In PD, value maximization, which is the main objective of lean theory, has been of particular interest as an improvement concept that can enhance process flow logistics and support decision-making. This paper presents an ongoing study of the current understanding of value thinking in PD (VPD) with a focus on value dimensions and implementation benefits. The purpose of this study is to consider the current state of knowledge regarding value thinking in PD, and to propose a definition of value and a framework for analyzing value delivery. The framework-named the Value Cycle Map (VCM)- intends to facilitate understanding of value and its delivery mechanism in the context of the PLC. We suggest the VCM could be used as a foundation for future research in value modelling and measurement in PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper, written in memory of Professor Wolfgang Beitz, discusses some of the influences of the work undertaken in Germany on systematic engineering design. It highlights differences between the language regions, and gives examples of design research and design education linked to Konstruktionslehre - the standard text on systematic engineering design for which Professor Beitz was most widely recognised outside Germany. The paper finishes with a plea for a greater exchange of ideas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern Engineering Design involves the deployment of many computational tools. Re- search on challenging real-world design problems is focused on developing improvements for the engineering design process through the integration and application of advanced com- putational search/optimization and analysis tools. Successful application of these methods generates vast quantities of data on potential optimum designs. To gain maximum value from the optimization process, designers need to visualise and interpret this information leading to better understanding of the complex and multimodal relations between param- eters, objectives and decision-making of multiple and strongly conflicting criteria. Initial work by the authors has identified that the Parallel Coordinates interactive visualisation method has considerable potential in this regard. This methodology involves significant levels of user-interaction, making the engineering designer central to the process, rather than the passive recipient of a deluge of pre-formatted information. In the present work we have applied and demonstrated this methodology in two differ- ent aerodynamic turbomachinery design cases; a detailed 3D shape design for compressor blades, and a preliminary mean-line design for the whole compressor core. The first case comprises 26 design parameters for the parameterisation of the blade geometry, and we analysed the data produced from a three-objective optimization study, thus describing a design space with 29 dimensions. The latter case comprises 45 design parameters and two objective functions, hence developing a design space with 47 dimensions. In both cases the dimensionality can be managed quite easily in Parallel Coordinates space, and most importantly, we are able to identify interesting and crucial aspects of the relationships between the design parameters and optimum level of the objective functions under con- sideration. These findings guide the human designer to find answers to questions that could not even be addressed before. In this way, understanding the design leads to more intelligent decision-making and design space exploration. © 2012 AIAA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present, optimisation is an enabling technology in innovation. Multi-objective and multi-disciplinary design tools are essential in the engineering design process, and have been applied successfully in aerospace and turbomachinery applications extensively. These approaches give insight into the design space and identify the trade-offs between the competing performance measures satisfying a number of constraints at the same time. It is anticipated here that the same benefits can be obtained for the design of micro-scale combustors. In this paper, a multi-disciplinary automated design optimisation system was developed for this purpose, which comprises a commercial computational fluid dynamics package and a multi-objective variant of the Tabu Search optimisation algorithm. The main objectives that are considered in this study are to optimise the main micro-scale combustor design characteristics and to satisfy manufacturability considerations from the very beginning of the whole design operation. Hydrogen-air combustion as well as 14 geometrical and 2 operational parameters are used to describe and model the design problem. Two illustrative test cases will be presented, in which the most important device operational requirements are optimised, and the efficiency of the developed optimisation system is demonstrated. The identification, assessment and suitability of the optimum design configurations are discussed in detail. Copyright © 2012 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multi-objective design optimisation study has been carried out with the objectives to improve the overall efficiency of the device and to reduce the fuel consumption for the proposed micro-scale combustor design configuration. In a previous study we identified the topology of the combustion chamber that produced improved behaviour of the device in terms of the above design criteria. We now extend our design approach, and we propose a new configuration by the addition of a micro-cooling channel that will improve the thermal behaviour of the design as previously suggested in literature. Our initial numerical results revealed an improvement of 2.6% in the combustion efficiency when we applied the micro-cooling channel to an optimum design configuration we identified from our earlier multi-objective optimisation study, and under the same operating conditions. The computational modelling of the combustion process is implemented in the commercial computational fluid dynamics package ANSYS-CFX using Finite Rate Chemistry and a single step hydrogen-air reaction. With this model we try to balance good accuracy of the combustion solution and at the same time practicality within the context of an optimisation process. The whole design system comprises also the ANSYS-ICEM CFD package for the automatic geometry and mesh generation and the Multi-Objective Tabu Search algorithm for the design space exploration. We model the design problem with 5 geometrical parameters and 3 operational parameters subject to 5 design constraints that secure practicality and feasibility of the new optimum design configurations. The final results demonstrate the reliability and efficiency of the developed computational design system and most importantly we assess the practicality and manufacturability of the revealed optimum design configurations of micro-combustor devices. Copyright © 2013 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of a new bioprocess requires several steps from initial concept to a practical and feasible application. Industrial applications of fungal pigments will depend on: (i) safety of consumption, (ii) stability of the pigments to the food processing conditions required by the products where they will be incorporated and (iii) high production yields so that production costs are reasonable. Of these requirements the first involves the highest research costs and the practical application of this type of processes may face several hurdles until final regulatory approval as a new food ingredient. Therefore, before going through expensive research to have them accepted as new products, the process potential should be assessed early on, and this brings forward pigment stability studies and process optimisation goals. Only ingredients that are usable in economically feasible conditions should progress to regulatory approval. This thesis covers these two aspects, stability and process optimisation, for a potential new ingredient; natural red colour, produced by microbial fermentation. The main goal was to design, optimise and scale-up the production process of red pigments by Penicillium purpurogenum GH2. The approach followed to reach this objective was first to establish that pigments produced by Penicillium purpurogenum GH2 are sufficiently stable under different processing conditions (thermal and non-thermal) that can be found in food and textile industries. Once defined that pigments were stable enough, the work progressed towards process optimisation, aiming for the highest productivity using submerged fermentation as production culture. Optimum production conditions defined at flask scale were used to scale up the pigment production process to a pilot reactor scale. Finally, the potential applications of the pigments were assessed. Based on this sequence of specific targets, the thesis was structured in six parts, containing a total of nine chapters. Engineering design of a bioprocess for the production of natural red colourants by submerged fermentation of the thermophilic fungus Penicillium purpurogenum GH2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problems of collaborative engineering design and knowledge management at the conceptual stage in a network of dissimilar enterprises was investigated. This issue in engineering design is a result of the supply chain and virtual enterprise (VE) oriented industry that demands faster time to market and accurate cost/manufacturing analysis from conception. The solution consisted of a de-centralised super-peer net architecture to establish and maintain communications between enterprises in a VE. In the solution outlined below, the enterprises are able to share knowledge in a common format and nomenclature via the building-block shareable super-ontology that can be tailored on a project by project basis, whilst maintaining the common nomenclature of the ‘super-ontology’ eliminating knowledge interpretation issues. The two-tier architecture layout of the solution glues together the peer-peer and super-ontologies to form a coherent system for both internal and virtual enterprise knowledge management and product development.