585 resultados para 260114 Geomorphology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous cores and dating show the Yangtze River has accumulated about 1.16 x 10(12) t sediment in its delta plain and proximal subaqueous delta during Holocene. High-resolution seismic profiling and coring in the southern East China Sea during 2003 and 2004 cruises has revealed an elongated (similar to 800 km) distal subaqueous mud wedge extending from the Yangtze River mouth southward off the Zhejiang and Fujian coasts into the Taiwan Strait. Overlying what appears to be a transgressive sand layer, this distal clinoform thins offshore, from similar to 40 in thickness between the 20 and 30 m water depth to < 1-2 in between 60 and 90 m water depth, corresponding to an across shelf distance of less than 100 km. Total volume of this distal mud wedge is about 4.5 x 10(11) m(3), equivalent to similar to 5.4 x 10(11) t of sediment. Most of the sediment in this mud wedge comes from the Yangtze River, with some input presumably coming from local smaller rivers. Thus, the total Yangtze-derived sediments accumulated in its deltaic system and East China Sea inner shelf have amounted to about 1.7 x 10(12) t. Preliminary analyses suggest this longshore and across-shelf transported clinoform mainly formed in the past 7000 yrs after postglacial sea level reached its mid-Holocene highstand, and after re-intensification of the Chinese longshore current system. Sedimentation accumulation apparently increased around 2000 yrs BP, reflecting the evolution of the Yangtze estuary and increased land erosion due to human activities, such as fanning and deforestation. The southward-flowing China Coastal Current, the northward-flowing Taiwan Warm Current, and the Kuroshio Current appear to have played critical roles in transporting and trapping most of Yangtze-derived materials in the inner shelf, and hence preventing the sediment escape into the deep ocean. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The West Philippine basin (WPB) is a currently inactive marginal basin belonging to Philippine Sea plate, which has a complex formation history and various crust structures. Based on gravity, magnetic and seismic data, the tectonics in West Philippine basin is characterized by amagma spreading stage and strike slip fractures. NNE trending Okinawa-Luzon fracture zone is a large fracture zone with apparent geomorphology and shows a right-handed movement. The results of joint gravity-magnetic-seismic inversion suggest that the Okinawa-Luzon fracture zone has intensive deformation and is a transform fault. Western existence of the NW trending fractures under Ryukyu Islands Arc is the main cause of the differences between south and north Okinawa Trough. The Urdaneta plateau is not a remained arc, but remnant of mantle plume although its lava chemistry is similar to oceanic island basalt (OIB).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the recent (1970s-1990s) processes of river mouth bar formation, riverbed aggradation and distributary migration in the Huanghe River mouth area, in the light of station-based monitoring, field measurements and remote sensing interpretation. The results show that the morphological changes of the river mouth bar have been closely associated with the largely reduced fluvial discharge and sediment load. Landforrn development such as bar progradation occurred in two phases, i.e. before and after 1989, which correspond to faster and lower bar growth rates, respectively. Fast riverbed aggradation in the mouth channel was strongly related to river mouth bar progradation. During 1976-1996, about 2.8% of the total sediment loads were deposited in the river channel on the upper to middle delta. Therefore, the river water level rose by a few meters from 1984 to 1996. The frequent distributary channel migration, which switched the radial channel pattern into the SE-directed pattern in the mid-1980s, was linked with mouth bar formation. Marine conditions also constrain seaward bar progradation. Furthermore, the history of river mouth bar formation reflects human impacts, such as dredging and dyking in order to stabilize the coastal area. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Badain Jaran Desert lies on the Alashan Plateau in western Inner Mongolia. Because of huge dunes, permanent lakes and on the northern fringe of the Asian summer monsoon, the Badain Jaran Desert has been drawing attentions of many experts. And they have made great progress in dune’s geomorphology, botany in desert, paleoclimate change and other study areas. We analyzed environmental isotope and ion chemistry in lakes and groundwater of the desert and southeastern area, and collected some other evidences from 14C dating, fossils and archeology. According to chemical analysis, we discuss the difference spatial character of ion chemistry and environmental isotope in lakes and groundwater of the desert and adjacent. Contrasting with ion chemistry and isotope results in other arid area, we argue origin of groundwater and lakes in the desert area, and get a preliminary understanding of desert lakes’ evolution during Holocene. Some main conclusions were drawn as follows: 1. It has a obvious difference in hydrophysical parameters between lakes and groundwater in the desert and margin. 2. The results of ion analysis show that Na+ and Cl- are dominant in most lakes of the desert. Meanwhile, Na+ 、Cl- and HCO3- are dominant in groundwater of the desert and adjacent, and alsoMg2+、Ca2+、and NO3- have more percentage than in lakes. 3. Owing to different solubilities, the conten of main ions in water varies with the content of TDS. Whereas the content of TDS is over 100 g/L, the content of SO42-、HCO3-、Mg2+and Ca2+ in lakes descend. 4. The result of isotope analyzing indicate the lakes and groundwater in southeast desert have a similar vaporing trend with the groundwater in the southeast margin of the desert. It imply there would have some kind of contact between groundwater in margin and lakes of southeast desert. 5. Contrasting with isotope results of groundwater in other arid area, it show that the groundwater in the desert and Yabulai area should be phreatic water which have a low water table. Therefore, we conclude that the groundwater in southeast part of the desert and southern margin mainly are recharged by precipitation of local abundant rainfall and groundwater of low mountain of southern area. 6. And all of these evidences, which are different from salinity, the content of CO32- and geological data, show that the bigger northern lake group and southeastern lake group in the desert have different groundwater replenishing system because a fold belt lie between of the two group lakes and obstruct them in landform. and HCO3- 7. The 14C dating results of fossil and lacustrine deposits show that there maybe have a wider range of shoreline during early and middle Holocene than today. 8. By the discovery and study of some pieces of pottery and fine stoneware, we preliminary conclude that there maybe have some certain amount of early human activities in the Badain Jaran Desert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nansha Islands as sacred territory of China, containing abundant natural resources is the important area of sustaining development of Chinese people. Safeguarding and developing Nansha Islands has become one important part to develop ocean resource of China in 21 century. Engineering geological problems will be faced inevitably in the processes of engineering construction. Coral reef is a new kind of soil and rock and has special engineering characteristics. This doctoral dissertation researches deeply and systematically the regional engineering geology environmental properties and quality, engineering geological characteristics of coral reefs sand on the basis of synthetic analysis of hydrology, climate, geology, geomorphology and engineering field exploration information and combining the experimental data. 1. Put forward the division program of engineering geological environment of Nansha Islands according to the data of hydrology, geology and sediments, and also deeply study the properties of each division. Evaluate the quality of engineering geological environment by fuzzy mathematics and draw the evaluation map of quality of engineering geological environment. The research work provides background support of engineering geological environment to program of resource development in Nansha Islands. 2. Structures of coral reefs have been analyzed. The model of engineering geological zone has been proposed on the basis of geomorphologic zone and combining the strata and ocean dynamic environment. The engineering construction appropriation of each zone is praised. 3. The physical and mechanical properties of coral sands are researched. The results show that coral sands have high void ratio, non-regular shape, easy grain crushing and large compressibility. Shear-expansion takes place only at very low confining pressure and shear-contraction of volumetric strain occurs at higher confining pressure. Internal friction angle decreases with the increasing of confining pressure. The grain crushing property is the main factor influencing the mechanical characteristics. 4. A revised E-ν constitutive model is proposed which considers the change of internal friction angle with confining pressure, and parameter values are also determined. 5. The stability of Yongshu Reef by is analysed for the purpose of serving engineering struction. The process and mechanism of deformation and failure of foundation and slope is analyzed by finite-element method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to realize fast development of the national economy in a healthy way and coordinate progress with whole society, the country has implemented the strategy of development of the western region. An important action of finishing this strategic task is to accelerate the highway construction in the western region, join the western region and places along the coast, the river, the border with goods and materials, technology, and personnel interchanges, and then drive development of the local economy.The western region was influenced by the Himalaya Tectonization in Cenozoic, and the crust rose and became the plateau. In the course of rising, rivers cut down sharply to form a lot of high mountains and gorges.Because of topography and geomorphology, bridges in the traffic construction in the alpine gorge area are needed. Rivers have characteristics of large flow, fast velocity and high and steep river valley, so building a pier in the river is not only very difficult, but also making the cost increase. At the same time, the impact that the pier is corroded and the bridge base that is drawn to be empty by flow are apt to cause destruction of the pier. For those reasons, suspending bridge and cable-stay bridge are usually adopted with the single and large span. For the large span bridge, the pier foundation could receive ten thousand and more vertical strength, bending moment and near kiloton horizontal thrust.Because bank slope in the alpine gorge district is cut deeply and unsettled big, natural stability is worse under endogenic and exogenic force. When bank slope bears heavy vertical strength, bending moment and horizontal thrust facing the river, it will inevitably make the balance state of rock and soil mass change, bridge bank slope deform, and even destroyed. So the key problem at the time of the large span's bridge construction in the alpine gorge area is how to make it stable.So based on the spot investigation, the Engineering Geology Analysis Method is very important to grasp the bank slope stability. It can provide the bank slope stability macroscopic ally and qualitatively, and reference to the indoor calculation. The Engineering Geology Analysis Method is that by way of analyzing and investigating terms of bank slope instability, stability development trend, the ancient rock slide and devolution in the site, stability comprehensive evaluation primarily, current and future stability of bank slope is gotten, realizing the intention to serving the concrete engineering.After the Engineering Geology Analysis Method is applied to project instances of BeiPan River Bridge and BaLin River Bridge, results are accord with bank slope actual conditions, which proves sites are suited to building bridges from site stability.we often meet bank slope stability issues in the traffic construction in the alpine gorge areao Before the evaluation of the bank slope stability, the engineering geological condition is investigated first. After that, the next exploration target and geology measures are decided. So, the Engineering Geology Analysis Method that the investigation of the engineering geological condition is the main content is quite important in practice. The other evaluations of the bank slope stability are based on it. Because foundation receives very heavy load, for the big span's bridge in the alpine gorge area, a long pile of the large diameter (D^0.8m) is usually selected. In order to reflect rock mass's deformation properties under rock-socketed pile function, the author has used the FLAG30 software for rock and soil mass and done many numerical simulations. By them, the author launches the further investigation on deformation properties of bank slope under different slope angle, pile length, diameter, elastic modulus, load, bank slope's structure, etc. Some conclusion meaningful to the design and produce are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ordos Basin is a typical cratonic petroliferous basin with 40 oil-gas bearing bed sets. It is featured as stable multicycle sedimentation, gentle formation, and less structures. The reservoir beds in Upper Paleozoic and Mesozoicare are mainly low density, low permeability, strong lateral change, and strong vertical heterogeneous. The well-known Loess Plateau in the southern area and Maowusu Desert, Kubuqi Desert and Ordos Grasslands in the northern area cover the basin, so seismic data acquisition in this area is very difficult and the data often takes on inadequate precision, strong interference, low signal-noise ratio, and low resolution. Because of the complicated condition of the surface and the underground, it is very difficult to distinguish the thin beds and study the land facies high-resolution lithologic sequence stratigraphy according to routine seismic profile. Therefore, a method, which have clearly physical significance, based on advanced mathematical physics theory and algorithmic and can improve the precision of the detection on the thin sand-peat interbed configurations of land facies, is in demand to put forward.Generalized S Transform (GST) processing method provides a new method of phase space analysis for seismic data. Compared with wavelet transform, both of them have very good localization characteristics; however, directly related to the Fourier spectra, GST has clearer physical significance, moreover, GST adopts a technology to best approach seismic wavelets and transforms the seismic data into time-scale domain, and breaks through the limit of the fixed wavelet in S transform, so GST has extensive adaptability. Based on tracing the development of the ideas and theories from wavelet transform, S transform to GST, we studied how to improve the precision of the detection on the thin stratum by GST.Noise has strong influence on sequence detecting in GST, especially in the low signal-noise ratio data. We studied the distribution rule of colored noise in GST domain, and proposed a technology to distinguish the signal and noise in GST domain. We discussed two types of noises: white noise and red noise, in which noise satisfy statistical autoregression model. For these two model, the noise-signal detection technology based on GST all get good result. It proved that the GST domain noise-signal detection technology could be used to real seismic data, and could effectively avoid noise influence on seismic sequence detecting.On the seismic profile after GST processing, high amplitude energy intensive zone, schollen, strip and lentoid dead zone and disarray zone maybe represent specifically geologic meanings according to given geologic background. Using seismic sequence detection profile and combining other seismic interpretation technologies, we can elaborate depict the shape of palaeo-geomorphology, effectively estimate sand stretch, distinguish sedimentary facies, determine target area, and directly guide oil-gas exploration.In the lateral reservoir prediction in XF oilfield of Ordos Basin, it played very important role in the estimation of sand stretch that the study of palaeo-geomorphology of Triassic System and the partition of inner sequence of the stratum group. According to the high-resolution seismic profile after GST processing, we pointed out that the C8 Member of Yanchang Formation in DZ area and C8 Member in BM area are the same deposit. It provided the foundation for getting 430 million tons predicting reserves and unite building 3 million tons off-take potential.In tackling key problem study for SLG gas-field, according to the high-resolution seismic sequence profile, we determined that the deposit direction of H8 member is approximately N-S or NNE-SS W. Using the seismic sequence profile, combining with layer-level profile, we can interpret the shape of entrenched stream. The sunken lenticle indicates the high-energy stream channel, which has stronger hydropower. By this way we drew out three high-energy stream channels' outline, and determined the target areas for exploitation. Finding high-energy braided river by high-resolution sequence processing is the key technology in SLG area.In ZZ area, we studied the distribution of the main reservoir bed-S23, which is shallow delta thin sand bed, by GST processing. From the seismic sequence profile, we discovered that the schollen thick sand beds are only local distributed, and most of them are distributary channel sand and distributary bar deposit. Then we determined that the S23 sand deposit direction is NW-SE in west, N-S in central and NE-SW in east. The high detecting seismic sequence interpretation profiles have been tested by 14 wells, 2 wells mismatch and the coincidence rate is 85.7%. Based on the profiles we suggested 3 predicted wells, one well (Yu54) completed and the other two is still drilling. The completed on Is coincident with the forecastThe paper testified that GST is a effective technology to get high- resolution seismic sequence profile, compartmentalize deposit microfacies, confirm strike direction of sandstone and make sure of the distribution range of oil-gas bearing sandstone, and is the gordian technique for the exploration of lithologic gas-oil pool in complicated areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pearson, Mike, In Comes I: Performance, Memory and Landscape (Exeter: University of Exeter Press, 2007) RAE2008

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An exceptional concentration of almost identical depressions exist near the small towns of Krotoszyn, Koźmin and Raszków (southern Wielkopolska). Their origin is, however, different from that of the typical post glacial-relief: they are Man-made enlarged thermal-contraction structures that developed at the very end of the Middle Polish (Warthian) glaciation and during the North Polish (Weichselian) glaciation, most probably under periglacial conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main conclusion of this dissertation is that global H2 production within young ocean crust (<10 Mya) is higher than currently recognized, in part because current estimates of H2 production accompanying the serpentinization of peridotite may be too low (Chapter 2) and in part because a number of abiogenic H2-producing processes have heretofore gone unquantified (Chapter 3). The importance of free H2 to a range of geochemical processes makes the quantitative understanding of H2 production advanced in this dissertation pertinent to an array of open research questions across the geosciences (e.g. the origin and evolution of life and the oxidation of the Earth’s atmosphere and oceans).

The first component of this dissertation (Chapter 2) examines H2 produced within young ocean crust [e.g. near the mid-ocean ridge (MOR)] by serpentinization. In the presence of water, olivine-rich rocks (peridotites) undergo serpentinization (hydration) at temperatures of up to ~500°C but only produce H2 at temperatures up to ~350°C. A simple analytical model is presented that mechanistically ties the process to seafloor spreading and explicitly accounts for the importance of temperature in H2 formation. The model suggests that H2 production increases with the rate of seafloor spreading and the net thickness of serpentinized peridotite (S-P) in a column of lithosphere. The model is applied globally to the MOR using conservative estimates for the net thickness of lithospheric S-P, our least certain model input. Despite the large uncertainties surrounding the amount of serpentinized peridotite within oceanic crust, conservative model parameters suggest a magnitude of H2 production (~1012 moles H2/y) that is larger than the most widely cited previous estimates (~1011 although previous estimates range from 1010-1012 moles H2/y). Certain model relationships are also consistent with what has been established through field studies, for example that the highest H2 fluxes (moles H2/km2 seafloor) are produced near slower-spreading ridges (<20 mm/y). Other modeled relationships are new and represent testable predictions. Principal among these is that about half of the H2 produced globally is produced off-axis beneath faster-spreading seafloor (>20 mm/y), a region where only one measurement of H2 has been made thus far and is ripe for future investigation.

In the second part of this dissertation (Chapter 3), I construct the first budget for free H2 in young ocean crust that quantifies and compares all currently recognized H2 sources and H2 sinks. First global estimates of budget components are proposed in instances where previous estimate(s) could not be located provided that the literature on that specific budget component was not too sparse to do so. Results suggest that the nine known H2 sources, listed in order of quantitative importance, are: Crystallization (6x1012 moles H2/y or 61% of total H2 production), serpentinization (2x1012 moles H2/y or 21%), magmatic degassing (7x1011 moles H2/y or 7%), lava-seawater interaction (5x1011 moles H2/y or 5%), low-temperature alteration of basalt (5x1011 moles H2/y or 5%), high-temperature alteration of basalt (3x1010 moles H2/y or <1%), catalysis (3x108 moles H2/y or <<1%), radiolysis (2x108 moles H2/y or <<1%), and pyrite formation (3x106 moles H2/y or <<1%). Next we consider two well-known H2 sinks, H2 lost to the ocean and H2 occluded within rock minerals, and our analysis suggests that both are of similar size (both are 6x1011 moles H2/y). Budgeting results suggest a large difference between H2 sources (total production = 1x1013 moles H2/y) and H2 sinks (total losses = 1x1011 moles H2/y). Assuming this large difference represents H2 consumed by microbes (total consumption = 9x1011 moles H2/y), we explore rates of primary production by the chemosynthetic, sub-seafloor biosphere. Although the numbers presented require further examination and future modifications, the analysis suggests that the sub-seafloor H2 budget is similar to the sub-seafloor CH4 budget in the sense that globally significant quantities of both of these reduced gases are produced beneath the seafloor but never escape the seafloor due to microbial consumption.

The third and final component of this dissertation (Chapter 4) explores the self-organization of barchan sand dune fields. In nature, barchan dunes typically exist as members of larger dune fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides (“calving”); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coastal processes and wildlife shape the coast into a variety of eye-catching and enticing landforms that attract people to marvel at, relax and enjoy coastal geomorphology. These landforms also influence biological communities by providing habitat and refuge. There are very few field guides to explain these processes to the general public and children. In contrast, there is a relative wealth of resources and organised activities introducing people to coastal wildlife, especially on rocky shores. These biological resources typically focus on the biology and climatic controls on their distribution, rather than how the biology interacts with its physical habitat. As an outcome of two recent rock coast biogeomorphology projects (detailed at: www.biogeomorph.org/coastal) a multi disciplinary team produced the first known guide to understanding how biogeomorphological processes help create coastal landforms. The ‘Shore Shapers’ guide (shoreshapers.org) is designed to: a. bring biotic geomorphic interactions (how animals, algae and microorganisms protect and shape rock) to life and b. introduce some of the geomorphological and geological controls on biogeomorphic processes and landform development. The guide provides scientific information in an accessible and interactive way – to help sustain children’s interest and extend their learning. We tested a draft version of the guide with children,the general public and volunteers on rocky shore rambles using social science techniques and present the findings, alongside initial results of an evaluation of a newer version of the guide and interactive workshops taking place throughout 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los agrietamientos poligonales representan una forma común de modelado granítico cuyo origen y evolución continúa en fase de estudio, no existiendo una sistematización de estas estructuras diversas. Algunos autores explican su origen por procesos geodinámicos internos, relacionándolo con movimientos de planos de fractura en estados tardíos de consolidación magmática. Otros autores atribuyen su formación y desarrollo a factores externos relacionados con el régimen climático. La gran variedad de agrietamientos poligonales requiere la utilización de un número mayor de variables para definir los distintos orígenes, y las posibles interrelaciones entre los factores externos e internos, así como para explicar la evolución de dichas estructuras y avanzar en la clasificación de los patrones concretos. Este trabajo pretende contribuir a sistematizar los mecanismos que intervienen en el desarrollo de agrietamientos poligonales. Para ello se estudian únicamente agrietamientos poligonales formados sobre planos de fractura verticales o subverticales. En particular se establecen relaciones entre la presencia de agrietamientos poligonales y la red de fracturación, la altura de aparición, la orientación e inclinación de la pared, la morfología de las placas y la profundidad de incisión de las grietas perimetrales. Por otra parte, establece relaciones entre procesos geodinámicos internos y procesos de meteorización externos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La microcuenca del río Bermúdez es parte de la principal zona de explotación hídrica en la región Central de Costa Rica, razón por la cual se realiza un diagnóstico de la disponibilidad del recurso hídrico en esta microcuenca donde se identifican las áreas con mayor problemática de disponibilidad de este recurso. Para ello se calculó un balance hídrico mensual, según uso del suelo, unidad geomorfológica y zona climática. Con base en este balance se determinó y clasificó la disponibilidad del recurso, identificando en la microcuenca solamente tres categorías: alta, media y moderada. No existen áreas de baja disponibilidad de recurso hídrico lo que demuestra que la oferta es suficiente, sin embargo, existe una presión importante sobre el recurso hídrico pues más de la mitad del área de la microcuenca se encuentra con una disponibilidad moderada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fundamental controls on the initiation and development of gravel-dominated deposits (beaches and barriers) on paraglacial coasts are particle size and shape, sediment supply, storm wave activity (primarily runup), relative sea-level (RSL) change, and terrestrial basement structure (primarily as it affects accommodation space). This paper examines the stochastic basis for barrier organisation as shown by variation in gravel barrier architecture. We recognise punctuated self-organisation of barrier development that is disrupted by short phases of barrier instability. The latter results from positive feedback causing barrier breakdown when sediment supply is exhausted. We examine published typologies for gravel barriers and advocate a consolidated perspective using rate of RSL change and sediment supply. We also consider the temporal variation in controls on barrier development. These are examined in terms of a simple behavioural model (BARCH) for prograding gravel barrier architecture and its sensitivity to such controls. The nature of macroscale (102–103 years) gravel barrier development, including inherited characteristics that influence barrier genesis, as well as forcing from changing RSL, sediment supply, headland control and barrier inertia, is examined in the context of long-surviving barriers along the southern England coastline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weathering studies have often sought to explain features in terms of a prevailing set of environmental conditions. However, it is clear that in most present-day hot desert regions, the surface rock debris has been exposed to a range of weathering environments and processes. These different weathering conditions can arise in two ways, either from the effects of long-term climate change acting on debris that remains relatively static within the landscape or through the spatial relocation of debris from high to low altitude. Consequently, each fragment of rock may contain a unique weathering-related legacy of damage and alteration — a legacy that may greatly influence its response to present-day weathering activity. Experiments are described in which blocks of limestone, sandstone, granite and basalt are given ‘stress histories’ by subjecting them to varying numbers of heating and freezing cycles as a form of pre-treatment. These imposed stress histories act as proxies for a weathering history. Some blocks were used in a laboratory salt weathering simulation study while others underwent a 2 year field exposure trial at high, mid and low altitude sites in Death Valley, California. Weight loss and ultrasonic pulse velocity measurements suggest that blocks with stress histories deteriorate more rapidly than unstressed samples of the same rock type exposed to the same environmental conditions. Laboratory data also indicate that the result of imposing a known ‘weathering history’ on samples by pre-stressing them is an increase in the amount of fine sediment released during salt weathering over a given period of time in comparison to unstressed samples.