942 resultados para 250604 Radiation and Matter
Resumo:
One of the research programs carried out within the Czech-Ukrainian scientific co-operation is the monitoring of global solar and ultraviolet radiation at the Vernadsky Station (formerly the British Faraday Station), Antarctica. Radiation measurements have been made since 2002. Recently, a special attention is devoted to the measurements of the erythemally effective UVB radiation using a broadband Robertson Berger 501 UV-Biometer (Solar Light Co. Inc., USA). This paper brings some results from modelling the daily sums of erythemally effective UVB radiation intensity in relation to the total ozone content (TOC) in atmosphere and surface intensity of the global solar radiation. Differences between the satellite- and ground-based measurements of the TOC at the Vernadsky Station are taken into consideration. The modelled erythemally effective UVB radiation differed slightly depending on the seasons and sources of the TOC. The model relative prediction error for ground- and satellite-based measurements varied between 9.5% and 9.6% in the period of 2002-2003, while it ranged from 7.4% to 8.8% in the period of 2003-2004.
Resumo:
We carried out short term pCO2/pH perturbation experiments in the coastal waters of the South China Sea to evaluate the combined effects of seawater acidification (low pH/high pCO2) and solar UV radiation (UVR, 280-400 nm) on photosynthetic carbon fixation of phytoplankton assemblages. Under photosynthetically active radiation (PAR) alone treatments, reduced pCO2 (190 ppmv) with increased pH resulted in a significant decrease in the photosynthetic carbon fixation rate (about 23%), while enriched pCO2 (700 ppmv) with lowered pH had no significant effect on the photosynthetic performance compared to the ambient level. The apparent photosynthetic efficiency decreased under the reduced pCO2 level, probably due to C-limitation as well as energy being diverged for up-regulation of carbon concentrating mechanisms (CCMs). In the presence of UVR, both UV-A and UV-B caused photosynthetic inhibition, though UV-A appeared to enhance the photosynthetic efficiency under lower PAR levels. UV-B caused less inhibition of photosynthesis under the reduced pCO2 level, probably because of its contribution to the inorganic carbon (Ci)-acquisition processes. Under the seawater acidification conditions (enriched pCO2), both UV-A and UV-B reduced the photosynthetic carbon fixation to higher extents compared to the ambient pCO2 conditions. We conclude that solar UV and seawater acidification could synergistically inhibit photosynthesis.
Resumo:
168 p.
Resumo:
PARP inhibitors can be used to induce synthetic lethality in cells with bi-allelic BRCA1 and BRCA2 mutations. However the effect of PARP inhibitors in combination with radiation on cells with mono-allelic mutations of BRCA1 and BRCA2 is unknown. We have examined the cell survival response of lymphoblastoid cells derived from normal individuals and those derived from carriers of BRCA1 and BRCA2 mutations, following exposure to ionising radiation and the PARP inhibitor Olaparib. Two lymphoblastoid cell lines from normal individuals and three with mono-allelic mutations in BRCA1 and BRCA2 were exposed to increasing doses of gamma radiation either alone or in combination with 5 μM Olaparib. Cell survival was measured using the MTT assay. Exposure to increasing doses of gamma radiation caused a reduction in cell survival of all cell types. The combined exposure to gamma radiation and 5 μM Olaparib did not enhance cell kill in normal or BRCA2 heterozygote lymphoblastoid cells but significantly enhanced cell kill in cells derived from BRCA1 carriers (P = 0.02). The treatment of cancer patients carrying mutations in the BRCA1 gene with radiotherapy and the PARP inhibitor Olaparib may significantly enhance radiation induced normal tissue toxicity in these patients.
Resumo:
Dissertação de mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2011
Resumo:
This short paper presents a numerical method for spatial and temporal downscaling of solar global radiation and mean air temperature data from global weather forecast models and its validation. The final objective is to develop a prediction algorithm to be integrated in energy management models and forecast of energy harvesting in solar thermal systems of medium/low temperature. Initially, hourly prediction and measurement data of solar global radiation and mean air temperature were obtained, being then numerically downscaled to half-hourly prediction values for the location where measurements were taken. The differences between predictions and measurements were analyzed for more than one year of data of mean air temperature and solar global radiation on clear sky days, resulting in relative daily deviations of around -0.9±3.8% and 0.02±3.92%, respectively.
Resumo:
Solar resource assessment is essential for the different phases of solar energy projects, such as preliminary design engineering, financing including due diligence and, later, insurance phases. An important aspect is the long term resource estimation. This kind of estimation can only be obtained through the statistical analysis of long-term data series of solar radiation measurements, preferably ground measurements. This paper is a first step in this direction, with an initial statistical analysis performed over the radiation data from a national measurement network, consisting of eighty-nine meteorological stations. These preliminary results are presented in figures that represent the annual average values of Global Horizontal Irradiation (GHI) and its Variability in the Portuguese continental territory. These results show that the South of Portugal is the most suitable area for the implementation of medium to large scale solar plants.
Resumo:
No último século, houve grande avanço no entendimento das interações das radiações com a matéria. Essa compreensão se faz necessária para diversas aplicações, entre elas o uso de raios X no diagnóstico por imagens. Neste caso, imagens são formadas pelo contraste resultante da diferença na atenuação dos raios X pelos diferentes tecidos do corpo. Entretanto, algumas das interações dos raios X com a matéria podem levar à redução da qualidade destas imagens, como é o caso dos fenômenos de espalhamento. Muitas abordagens foram propostas para estimar a distribuição espectral de fótons espalhados por uma barreira, ou seja, como no caso de um feixe de campo largo, ao atingir um plano detector, tais como modelos que utilizam métodos de Monte Carlo e modelos que utilizam aproximações analíticas. Supondo-se um espectro de um feixe primário que não interage com nenhum objeto após sua emissão pelo tubo de raios X, este espectro é, essencialmente representado pelos modelos propostos anteriormente. Contudo, considerando-se um feixe largo de radiação X, interagindo com um objeto, a radiação a ser detectada por um espectrômetro, passa a ser composta pelo feixe primário, atenuado pelo material adicionado, e uma fração de radiação espalhada. A soma destas duas contribuições passa a compor o feixe resultante. Esta soma do feixe primário atenuado, com o feixe de radiação espalhada, é o que se mede em um detector real na condição de feixe largo. O modelo proposto neste trabalho visa calcular o espectro de um tubo de raios X, em situação de feixe largo, o mais fidedigno possível ao que se medem em condições reais. Neste trabalho se propõe a discretização do volume de interação em pequenos elementos de volume, nos quais se calcula o espalhamento Compton, fazendo uso de um espectro de fótons gerado pelo Modelo de TBC, a equação de Klein-Nishina e considerações geométricas. Por fim, o espectro de fótons espalhados em cada elemento de volume é somado ao espalhamento dos demais elementos de volume, resultando no espectro total espalhado. O modelo proposto foi implementado em ambiente computacional MATLAB® e comparado com medições experimentais para sua validação. O modelo proposto foi capaz de produzir espectros espalhados em diferentes condições, apresentando boa conformidade com os valores medidos, tanto em termos quantitativos, nas quais a diferença entre kerma no ar calculado e kerma no ar medido é menor que 10%, quanto qualitativos, com fatores de mérito superiores a 90%.
Resumo:
Ionizing radiation causes degeneration of myelin, the insulating sheaths of neuronal axons, leading to neurological impairment. As radiation research on the central nervous system has predominantly focused on neurons, with few studies addressing the role of glial cells, we have focused our present research on identifying the latent effects of single/ fractionated -low dose of low/ high energy radiation on the role of base excision repair protein Apurinic Endonuclease-1, in the rat spinal cords oligodendrocyte progenitor cells’ differentiation. Apurinic endonuclease-1 is predominantly upregulated in response to oxidative stress by low- energy radiation, and previous studies show significant induction of Apurinic Endonuclease-1 in neurons and astrocytes. Our studies show for the first time, that fractionation of protons cause latent damage to spinal cord architecture while fractionation of HZE (28Si) induce increase in APE1 with single dose, which then decreased with fractionation. The oligodendrocyte progenitor cells differentiation was skewed with increase in immature oligodendrocytes and astrocytes, which likely cause the observed decrease in white matter, increased neuro-inflammation, together leading to the observed significant cognitive defects.
Resumo:
Whether interspecific hybridization is important as a mechanism that generates biological diversity is a matter of controversy. Whereas some authors focus on the potential of hybridization as a source of genetic variation, functional novelty and new species, others argue against any important role, because reduced fitness would typically render hybrids an evolutionary dead end. By drawing on recent developments in the genetics and ecology of hybridization and on principles of ecological speciation theory, I develop a concept that reconciles these views and adds a new twist to this debate. Because hybridization is common when populations invade new environments and potentially elevates rates of response to selection, it predisposes colonizing populations to rapid adaptive diversification under disruptive or divergent selection. I discuss predictions and suggest tests of this hybrid swarm theory of adaptive radiation and review published molecular phylogenies of adaptive radiations in light of the theory. Some of the confusion about the role of hybridization in evolutionary diversification stems from the contradiction between a perceived necessity for cessation of gene flow to enable adaptive population differentiation on the one hand [1], and the potential of hybridization for generating adaptive variation, functional novelty and new species 2, 3 and 4 on the other. Much progress in the genetics 5, 6, 7, 8 and 9 and ecology of hybridization 9, 10 and 11, and in our understanding of the role of ecology in speciation (see Glossary) 12, 13 and 14 make a re-evaluation timely. Whereas botanists traditionally stressed the diversity-generating potential of hybridization 2, 3 and 14, zoologists traditionally saw it as a process that limits diversification [1] and refer to it mainly in the contexts of hybrid zones (Box 1) and reinforcement of reproductive isolation [15]. Judging by the wide distribution of allopolyploidy among plants, many plant species might be of direct hybrid origin or descended from a hybrid species in the recent past [16]. The ability to reproduce asexually might explain why allopolyploid hybrid species are more common in plants than in animals. Allopolyploidy arises when meiotic mismatch of parental chromosomes or karyotypes causes hybrid sterility. Mitotic error, duplicating the karyotype, can restore an asexually maintained hybrid line to fertility. Although bisexual allopolyploid hybrid species are not uncommon in fish [17] and frogs [18], the difficulty with which allopolyploid animals reproduce, typically requiring gynogenesis[19], makes establishment and survival of allopolyploid animal species difficult.
Resumo:
We address two issues in the determination of particulate carbon and nitrogen in suspended matter of aquatic environments. One is the adsorption of dissolved organic matter on filters, leading to overestimate particulate matter. The second is the material loss during filtration due to fragile algal cells breaking up. Examples from both laboratory cultures and natural samples are presented. We recommend using stacked filters in order to estimate thefirst and filtering different volumes of water in order to evaluate the second.
Resumo:
This paper aims to address the ways in which drawing can be understood as the becoming-expressive of materials, site, and body, over time. The discussion pivots around a series of studies that replace linear or causal relationships – in history, drawing and expression – with topological movement. My approach is largely through a speculative case study. In a rereading of the familiar Butades myth, I examine how a shadow tracing can variously be taken as the first mimetic art with its origins in the urge to “capture”, and, antithetically, as the originary expressive folding of matter, site and body. The paper is divided into five sections. The first presents the Butades myth, identifying the representational problem that lies at the roots of its traditional telling. The next three sections outline a series of topologies that facilitate a discussion of the Butades myth from historical, disciplinary, and expressive perspectives. The final section aims to show the relevance of this discussion to a contemporary drawing practice, using my own drawing research as a case study. The field of inquiry is that of representational critique. The fold, an image associated with a topological geometry, replaces the relational or signifying disjuncture of representational structures, and suggests a becoming- expressive of subject and object, form and matter.
Resumo:
In the wheatbelt of eastern Australia, rainfall shifts from winter dominated in the south (South Australia, Victoria) to summer dominated in the north (northern New South Wales, southern Queensland). The seasonality of rainfall, together with frost risk, drives the choice of cultivar and sowing date, resulting in a flowering time between October in the south and August in the north. In eastern Australia, crops are therefore exposed to contrasting climatic conditions during the critical period around flowering, which may affect yield potential, and the efficiency in the use of water (WUE) and radiation (RUE). In this work we analysed empirical and simulated data, to identify key climatic drivers of potential water- and radiation-use efficiency, derive a simple climatic index of environmental potentiality, and provide an example of how a simple climatic index could be used to quantify the spatial and temporal variability in resource-use efficiency and potential yield in eastern Australia. Around anthesis, from Horsham to Emerald, median vapour pressure deficit (VPD) increased from 0.92 to 1.28 kPa, average temperature increased from 12.9 to 15.2°C, and the fraction of diffuse radiation (FDR) decreased from 0.61 to 0.41. These spatial gradients in climatic drivers accounted for significant gradients in modelled efficiencies: median transpiration WUE (WUEB/T) increased southwards at a rate of 2.6% per degree latitude and median RUE increased southwards at a rate of 1.1% per degree latitude. Modelled and empirical data confirmed previously established relationships between WUEB/T and VPD, and between RUE and photosynthetically active radiation (PAR) and FDR. Our analysis also revealed a non-causal inverse relationship between VPD and radiation-use efficiency, and a previously unnoticed causal positive relationship between FDR and water-use efficiency. Grain yield (range 1-7 t/ha) measured in field experiments across South Australia, New South Wales, and Queensland (n = 55) was unrelated to the photothermal quotient (Pq = PAR/T) around anthesis, but was significantly associated (r2 = 0.41, P < 0.0001) with newly developed climatic index: a normalised photothermal quotient (NPq = Pq . FDR/VPD). This highlights the importance of diffuse radiation and vapour pressure deficit as sources of variation in yield in eastern Australia. Specific experiments designed to uncouple VPD and FDR and more mechanistic crop models might be required to further disentangle the relationships between efficiencies and climate drivers.
Resumo:
The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple doses of UVA irradiation. This enhancement of adhesiveness might lead to an increase in binding tumor cells to the endothelial lining of vasculature in various internal organs if occurring also in vivo. A further novel observation is that UVA induced both decline in the expression of E-cadherin adhesion molecule and increase in the expression of the N-cadherin adhesion molecule. In addition, a significant decline in homotypic melanoma-melanoma adhesion (clustering) was observed, which might result in the reduction of E-cadherin expression. The aim of the in vivo animal study was to confirm the physiological significance of previously obtained in vitro results and to determine whether UVA radiation might increase melanoma metastasis in vivo. The use of C57BL/6 mice and syngeneic melanoma cell lines B16-F1 and B16-F10 showed that mice, which were i.v. injected with B16-F1 melanoma cells and thereafter exposed to UVA developed significantly more lung metastases when compared with the non-UVA-exposed group. To study the mechanism behind this phenomenon, the direct effect of UVA-induced lung colonization capacity was examined by the in vitro exposure of B16-F1 cells. Alternatively, the UVA-induced immunosuppression, which might be involved in increased melanoma metastasis, was measured by standard contact hypersensitivity assay (CHS). It appears that the UVA-induced increase of metastasis in vivo might be caused by a combination of UVA-induced systemic immunosuppression, and to the lesser extent, it might be caused by the increased adhesiveness of UVA irradiated melanoma cells. Finally, the UVA effect on gene expression in mouse melanoma was determined by a cDNA array, which revealed UVA-induced changes in the 9 differentially expressed genes that are involved in angiogenesis, cell cycle, stress-response, and cell motility. These results suggest that observed genes might be involved in cellular response to UVA and a physiologically relevant UVA dose have previously unknown cellular implications. The novel results presented in this thesis offer evidence that UVA exposure might increase the metastatic potential of the melanoma cells present in blood circulation. Considering the wellknown UVA-induced deleterious effects on cellular level, this study further supports the notion that UVA radiation might have more potential impact on health than previously suggested. The possibility of the pro-metastatic effects of UVA exposure might not be of very high significance for daily exposures. However, UVA effects might gain physiological significance following extensive sunbathing or solaria tanning periods. Whether similar UVA-induced pro-metastatic effects occur in people sunbathing or using solaria remains to be determined. In the light of the results presented in this thesis, the avoidance of solaria use could be well justified.