981 resultados para 2415: equatorial ionosphere


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessment is made of the effect of the assumed form for the ion velocity distribution function on estimates of three-dimensional ion temperature from one-dimensional observations. Incoherent scatter observations by the EISCAT radar at a variety of aspect angles are used to demonstrate features of ion temperature determination and to study the ion velocity distribution function. One form of the distribution function which has recently been widely used In the interpretation of EISCAT measurements, is found to be consistent with the data presented here, in that no deviation from a Maxwellian can be detected for observations along the magnetic field line and that the ion temperature and its anisotropy are accurately predicted. It is shown that theoretical predictions of the anisotropy by Monte Carlo computations are very accurate, the observed value being greater by only a few percent. It is also demonstrated for the case studied that errors of up to 93% are introduced into the ion temperature estimate if the anisotropy is neglected. Observations at an aspect angle of 54.7°, which are not subject to this error, have a much smaller uncertainty (less than 1%) due to the adopted form of the distribution of line-of-sight velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outflowing ions from the polar ionosphere fall into two categories: the classical polar wind and the suprathermal ion flows. The flows in both these categories vary a great deal with altitude. The classical polar wind is supersonic at high altitude: at ∼3 RE geocentric, the observed polar wind is H+ dominated and has a Mach number of 2.5–5.1. At 400–600 km, thermal and suprathermal upward O+ ion fluxes frequently occur at the poleward edge of the nightside auroral oval during magnetically active times. Above 500 km, ions are accelerated transverse to the local geomagnetic field. At 1400 km, transversely accelerated ions are frequently observed in winter nights but rarely appear in the summer. In the dayside cleft above ∼2000 km, ions of all species are transversely heated and upwell with significant number and heat fluxes, forming a cleft ion fountain as they convect across the polar cap. Upwelling ions are observed most (least) frequently in the summer (winter). At yet higher altitudes, energetic (>10 eV to several kiloelectron volts) upflowing H+ and O+ ions are frequently observed, their active time occurrence frequency being as high as 0.7 at auroral latitudes and 0.3 in the polar cap. Their composition, intensity, and angular characteristics vary quantitatively with solar activity, being O+ dominant and more intense near solar maximum. Their resulting ion outflow is dominated by ions below 1 keV and reaches 3.5×10^26 O+ and 7×10^25 H+ ions s^{−1} at magnetically active times (Kp≥5) near solar maximum. In comparison, the estimated polar wind ion outflow at times of moderate solar activity is 7×10^25H+ and 4×10^24 He+ ions s^{−1}. The estimated <10-eV cleft ion fountain flow is 3.8×10^25 O+ and 8.6×10^23 H+ ions s^{−1} near solar maximum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a first overview of flows in the high latitude ionosphere observed at 15 s resolution using the U.K.-Polar EISCAT experiment. Data are described from experiments conducted on two days, 27 October 1984 and 29 August 1985, which together span the local times between about 0200 and 2130MLT and cover five different regions of ionospheric flow. With increasing local time, these are: the dawn auroral zone flow cell, the dayside region of low background flows equatorward of the flow cells, the dusk auroral zone flow cell, the boundary region between the dusk auroral zone and the polar cap, and the evening polar cap. Flows in both the equatorward and poleward portions of the auroral zone cells appear to be relatively smooth, while in the central region of high speed flow considerable variations are generally present. These have the form of irregular fluctuations on a wide range of time scales in the early morning dawn cell, and impulsive wave-like variations with periods of a few minutes in the afternoon dusk cell. In the dayside region between the flow cells, the ionosphere is often essentially stagnant for long intervals, but low amplitude ULF waves with a period of about 5 min can also occur and persist for many cycles. These conditions are punctuated at one to two hour intervals by sudden ‘flow burst’ events with impulsively generated damped wave trains. Initial burst flows are generally directed poleward and can peak at line-of-sight speeds in excess of 1 km s^{−1} after perhaps 45 s. Flows in the polar cap are reasonably smooth on time scales of a few minutes and show no evidence for the presence of ULF waves. Under most, but not all, of the above conditions, the beam-swinging algorithm used to determine background vector flows should produce meaningful results. Comparison of these flow data with simultaneous plasma and magnetic field measurements in the solar wind, made by the AMPTE IRM and UKS spacecraft, emphasizes the strong control exerted on high latitude flows by the north-south component of the IMF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data from the Dynamics Explorer 1 satellite and the EISCAT and Sondrestrom incoherent scatter radars, have allowed a study of low-energy ion outflows from the ionosphere into the magnetosphere during a rapid expansion of the polar cap. From the combined radar data, a 200kV increase in cross-cap potential is estimated. The upflowing ions show “X” signatures in the pitch angle-time spectrograms in the expanding midnight sector of the auroral oval. These signatures reveal low-energy (below about 60eV), light-ion beams sandwiched between two regions of ion conics and are associated with inverted-V electron precipitation. The lack of mass dispersion of the poleward edge of the event, despite great differences in the times of flight, reflects the equatorward expansion of the acceleration regions at velocities similar to those of the antisunward convection. In addition, a transient burst of upflow of 0+ is observed within the cap, possibly due to enhanced Joule heating during the event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper surveys the results of simultaneous observations by the EISCAT incoherent scatter radar and the AMPTE-UKS satellite, made during three periods in September and October 1984, when AMPTE-UKS was in the solar wind on the dayside of the Earth and the UK-POLAR EISCAT experiment was measuring ionospheric parameters at invariant latitudes 70.8–75.0°. A total of 42 h of EISCAT convection velocity data, with 2.5 min resolution, were obtained, together with 28 h of simultaneous 5 s resolution AMPTE-UKS observations of the solar wind and interplanetary magnetic field (IMF). The general features of the AMPTE-UKS data are described in Section 2 and those of the EISCAT data are described in Sections 3 and 4. The main subjects discussed are the form of the plasma convection patterns and their dependence on all three components of the IMF (Section 5), the ionospheric response to abrupt changes in the IMF (Section 6), in particular a sharp ‘southward turning’ of the IMF on 27 October 1984, and a crossing of an IMF sector boundary. Section 7 describes ‘short lived rapid flow burst’, which are believed to be related to flux transfer events at the magnetopause.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations are presented of short-lived, highly structured bursts of rapid plasma flow observed with the EISCAT radar in the high latitude dayside ionosphere. It is shown that the properties of the bursts are consistent with ionospheric perturbations caused by impulsive, localized reconnection at the Earth's magnetopause, i.e. by flux transfer events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for quantifying diffusive flows of O+ ions in the topside ionosphere from satellite soundings is described. A departure from diffusive equilibrium alters the shape of the plasma scale-height profile near the F2-peak where ion-neutral frictional drag is large. The effect enables the evaluation of , the field-aligned flux of O+ ions relative to the neutral oxygen atom gas, using MSIS model values for the neutral thermospheric densities and temperature. Upward flow values are accurate to within about 10%, the largest sources of error being the MSIS prediction for the concentration of oxygen atoms and the plasma temperature gradient deduced from the sounding. Downward flux values are only determined to within 20%. From 60,000 topside soundings, taken at the minimum and rising phase of the solar cycle, a total of 1098 mean scale-height profiles are identified for which no storm sudden commencement had occurred in the previous 12 days and for which Kp was less than 2o, each mean profile being an average of about six soundings. A statistical study ofdeduced from these profiles shows the diurnal cycle of O+ flow in the quiet, topside ionosphere at mid-latitudes and its seasonal variations. The differences betweenand ion flux observations from incoherent scatter radars are considered using the meridional thermospheric winds predicted by a global, three-dimensional model. The mean interhemispheric flow from summer to winter is compared with predictions by a numerical model of the protonospheric coupling of conjugate ionospheres for up to 6 days following a geomagnetic storm. The observed mean (of order 3 × 1016 ions day−1 along a flux tube of area 1 m2 at 1000 km) is larger than predicted for day 6 and the suggested explanation is a decrease in upward flows from the winter, daytime ionosphere between the sixth and twelfth days.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topside ionospheric profiles are used to study the upward field-aligned flow of thermal O+ at high latitudes. On the majority of the field lines outside the plasmasphere, the mean flux is approximately equal to the mean polar wind measured by spacecraft at greater altitudes. This is consistent with the theory of thermal light ion escape supported, via charge exchange, by upward O+ flow at lower heights. Events of larger O+ flow are detected at auroral latitudes and their occurrence is found to agree with that of transversely accelerated ions within the topside ionosphere and the magnetosphere. The effects of low altitude heating of O+ by oxygen cyclotron waves, driven by downward field-aligned currents, are considered as a possible common cause of these two types of event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of 7.335 MHz, c.w. signals over a 5212 km sub-auroral, west-east path is studied. Measurements and semi-empirical predictions are made of the amplitude distributions and Doppler shifts of the received signals. The observed amplitude distribution is fitted with one produced by a numerical fading model, yielding the power losses suffered by the signals during propagation via the predominating modes. The signals are found to suffer exceptionally low losses at certain local times under geomagnetically quiet conditions. The mid-latitude trough in the F2 peak ionization density is predicted by a statistical model to be at the latitudes of this path at these times and at low Kp values. A sharp cut-off in low-power losses at a mean Kp of 2.75 strongly implicates the trough in the propagation of these signals. The Doppler shifts observed at these times cannot be explained by a simple ray-tracing model. It is shown however, that a simple extension of this model to allow for the trough can reproduce the form of the observed diurnal variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tracking the formation and full evolution of polar cap ionization patches in the polar ionosphere, we directly observe the full Dungey convection cycle for southward interplanetary magnetic field (IMF) conditions. This enables us to study how the Dungey cycle influences the patches’ evolution. The patches were initially segmented from the dayside storm enhanced density plume at the equatorward edge of the cusp, by the expansion and contraction of the polar cap boundary due to pulsed dayside magnetopause reconnection, as indicated by in situ Time History of Events and Macroscale Interactions during Substorms(THEMIS) observations. Convection led to the patches entering the polar cap and being transported antisunward, while being continuously monitored by the globally distributed arrays of GPS receivers and Super Dual Auroral Radar Network radars. Changes in convection over time resulted in the patches following a range of trajectories, each of which differed somewhat from the classical twin-cell convection streamlines. Pulsed nightside reconnection, occurring as part of the magnetospheric substorm cycle, modulated the exit of the patches from the polar cap, as confirmed by coordinated observations of the magnetometer at Tromsø and European Incoherent Scatter Tromsø UHF radar. After exiting the polar cap, the patches broke up into a number of plasma blobs and returned sunward in the auroral return flow of the dawn and/or dusk convection cell. The full circulation time was about 3 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Satellite based top-of-atmosphere (TOA) and surface radiation budget observations are combined with mass corrected vertically integrated atmospheric energy divergence and tendency from reanalysis to infer the regional distribution of the TOA, atmospheric and surface energy budget terms over the globe. Hemispheric contrasts in the energy budget terms are used to determine the radiative and combined sensible and latent heat contributions to the cross-equatorial heat transports in the atmosphere (AHT_EQ) and ocean (OHT_EQ). The contrast in net atmospheric radiation implies an AHT_EQ from the northern hemisphere (NH) to the southern hemisphere (SH) (0.75 PW), while the hemispheric difference in sensible and latent heat implies an AHT_EQ in the opposite direction (0.51 PW), resulting in a net NH to SH AHT_EQ (0.24 PW). At the surface, the hemispheric contrast in the radiative component (0.95 PW) dominates, implying a 0.44 PW SH to NH OHT_EQ. Coupled model intercomparison project phase 5 (CMIP5) models with excessive net downward surface radiation and surface-to-atmosphere sensible and latent heat transport in the SH relative to the NH exhibit anomalous northward AHT_EQ and overestimate SH tropical precipitation. The hemispheric bias in net surface radiative flux is due to too much longwave surface radiative cooling in the NH tropics in both clear and all-sky conditions and excessive shortwave surface radiation in the SH subtropics and extratropics due to an underestimation in reflection by clouds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synoptic wind events in the equatorial Pacific strongly influence the El Niño/Southern Oscillation (ENSO) evolution. This paper characterizes the spatio-temporal distribution of Easterly (EWEs) and Westerly Wind Events (WWEs) and quantifies their relationship with intraseasonal and interannual large-scale climate variability. We unambiguously demonstrate that the Madden–Julian Oscillation (MJO) and Convectively-coupled Rossby Waves (CRW) modulate both WWEs and EWEs occurrence probability. 86 % of WWEs occur within convective MJO and/or CRW phases and 83 % of EWEs occur within the suppressed phase of MJO and/or CRW. 41 % of WWEs and 26 % of EWEs are in particular associated with the combined occurrence of a CRW/MJO, far more than what would be expected from a random distribution (3 %). Wind events embedded within MJO phases also have a stronger impact on the ocean, due to a tendency to have a larger amplitude, zonal extent and longer duration. These findings are robust irrespective of the wind events and MJO/CRW detection methods. While WWEs and EWEs behave rather symmetrically with respect to MJO/CRW activity, the impact of ENSO on wind events is asymmetrical. The WWEs occurrence probability indeed increases when the warm pool is displaced eastward during El Niño events, an increase that can partly be related to interannual modulation of the MJO/CRW activity in the western Pacific. On the other hand, the EWEs modulation by ENSO is less robust, and strongly depends on the wind event detection method. The consequences of these results for ENSO predictability are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general 1-D theory of waves propagating on a zonally varying flow is developed from basic wave theory, and equations are derived for the variation of wavenumber and energy along ray paths. Different categories of behaviour are found, depending on the sign of the group velocity (cg) and a wave property, B. For B positive the wave energy and the wave number vary in the same sense, with maxima in relative easterlies or westerlies, depending on the sign of cg. Also the wave accumulation of Webster and Chang (1988) occurs where cg goes to zero. However for B negative they behave in opposite senses and wave accumulation does not occur. The zonal propagation of the gravest equatorial waves is analysed in detail using the theory. For non-dispersive Kelvin waves, B reduces to 2, and analytic solution is possible. B is positive for all the waves considered, except for the westward moving mixed Rossby-gravity (WMRG) wave which can have negative as well as positive B. Comparison is made between the observed climatologies of the individual equatorial waves and the result of pure propagation on the climatological upper tropospheric flow. The Kelvin wave distribution is in remarkable agreement, considering the approximations made. Some aspects of the WMRG and Rossby wave distributions are also in qualitative agreement. However the observed maxima in these waves in the winter westerlies in the eastern Pacific and Atlantic are not consistent with the theory. This is consistent with the importance of the sources of equatorial waves in these westerly duct regions due to higher latitude wave activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contrasting behaviour of westward-moving mixed Rossby-gravity (WMRG) and the first Rossby (R1) waves in El Niño (EN) and La Niña (LN) seasons is documented with a focus on the Northern Hemisphere winter. The eastward-moving variance in the upper troposphere is dominated by WMRG and R1 structures that appear to be Doppler-shifted by the flow and are referred to as WMRG-E and R1-E. In the East Pacific and Atlantic the years with stronger equatorial westerly winds have the stronger WMRG and WMRG- E. In the East Pacific, R1 is also a maximum in LN. However, R1-E exhibits an eastward-shift between LN and EN. The changes with ENSO phase provide a test-bed for the understanding of these waves. In the East Pacific and Atlantic, the stronger WMRG-E and WMRG with stronger westerlies are in accord with the dispersion relation with simple Doppler-shifting by the zonal flow. The possible existence of free waves can also explain stronger R1 in EN in the Eastern Hemisphere. 1-D free wave propagation theory based on wave activity conservation is also important for R1. However, this theory is unable to explain the amplitude maxima for other waves observed in the strong equatorial westerly regions in the Western Hemisphere, and certainly not their ENSO-related variation. The forcing of equatorial waves by higher latitude wave activity and its variation with ENSO phase is therefore examined. Propagation of extratropical eastward-moving Rossby wave activity through the westerly ducts into the equatorial region where it triggers WMRG-E is favoured in the stronger westerlies, in LN in the East Pacific and EN in the Atlantic. It is also found that WMRG is forced by Southern Hemisphere westward-moving wavetrains arching into the equatorial region where they are reflected. The most significant mechanism for both R1 and R1-E appear to be lateral forcing by subtropical wavetrains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparison tool has been developed by mapping the global GPS total electron content (TEC) and large coverage of ionospheric scintillations together on the geomagnetic latitude/magnetic local time coordinates. Using this tool, a comparison between large-scale ionospheric irregularities and scintillations are pursued during a geomagnetic storm. Irregularities, such as storm enhanced density (SED), middle-latitude trough and polar cap patches, are clearly identified from the TEC maps. At the edges of these irregularities, clear scintillations appeared but their behaviors were different. Phase scintillations (σsub{φ}) were almost always larger than amplitude scintillations (S4) at the edges of these irregularities, associated with bursty flows or flow reversals with large density gradients. An unexpected scintillation feature appeared inside the modeled auroral oval where S4 were much larger than σsub{φ}, most likely caused by particle precipitations around the exiting polar cap patches.