998 resultados para 201-1231A
Resumo:
The magnesium isotope composition of diagenetic dolomites and their adjacent pore fluids were studied in a 250 m thick sedimentary section drilled into the Peru Margin during Ocean Drilling Program (ODP) Leg 201 (Site 1230) and Leg 112 (Site 685). Previous studies revealed the presence of two types of dolomite: type I dolomite forms at ~ 6 m below seafloor (mbsf) due to an increase in alkalinity associated with anaerobic methane oxidation, and type II dolomite forms at focused sites below ~ 230 mbsf due to episodic inflow of deep-sourced fluids into an intense methanogenesis zone. The pore fluid delta 26Mg composition becomes progressively enriched in 26Mg with depth from values similar to seawater (i.e. -0.8 per mil, relative to DSM3 Mg reference material) in the top few meters below seafloor (mbsf) to 0.8 ± 0.2 per mil within the sediments located below 100 mbsf. Type I dolomites have a delta 26Mg of -3.5 per mil, and exhibit apparent dolomite-pore fluid fractionation factors of about -2.6 per mil consistent with previous studies of dolomite precipitation from seawater. In contrast, type II dolomites have delta 26Mg values ranging from -2.5 to -3.0 per mil and are up to -3.6 per mil lighter than the modern pore fluid Mg isotope composition. The enrichment of pore fluids in 26Mg and depletion in total Mg concentration below ~ 200 mbsf is likely the result of Mg isotope fractionation during dolomite formation, The 26Mg enrichment of pore fluids in the upper ~ 200 mbsf of the sediment sequence can be attributed to desorption of Mg from clay mineral surfaces. The obtained results indicate that Mg isotopes recorded in the diagenetic carbonate record can distinguish near surface versus deep formed dolomite demonstrating their usefulness as a paleo-diagenetic proxy.
Resumo:
High-resolution analyses of the oxygen isotope ratio (18O/16O) of dissolved sulfate in pore waters have been made to depths of >400 meters below seafloor (mbsf) at open-ocean and upwelling sites in the eastern equatorial Pacific Ocean. d18O values of dissolved sulfate (d18O-SO4) at the organic-poor open-ocean Site 1231 gave compositions close to modern seawater (+9.5 per mil vs. Vienna-standard mean ocean water, providing no chemical or isotopic evidence for microbial sulfate reduction (MSR). In contrast, the maximum d18O values at Sites 1225 and 1226, which contain higher organic matter contents, are +20 per mil and +28 per mil, respectively. Depth-correlative trends of increasing d18O-SO4, alkalinity, and ammonium and the presence of sulfide indicate significant oxidation of sedimentary organic matter by sulfate-reducing microbial populations at these sites. Although sulfate concentration profiles at Sites 1225 and 1231 both show similarly flat trends without significant net MSR, d18O-SO4 values at Site 1225 reveal the presence of significant microbial sulfur-cycling activity, which contrasts to Site 1231. This activity may include contributions from several processes, including enzyme-catalyzed equilibration between oxygen in sulfate and water superimposed upon bacterial sulfate reduction, which would tend to shift d18O-SO4 toward higher values than MSR alone, and sulfide oxidation, possibly coupled to reduction of Fe and Mn oxides and/or bacterial disproportionation of sulfur intermediates. Large isotope enrichment factors observed at Sites 1225 and 1226 (epsilon values between 42 per mil and 79 per mil) likely reflect concurrent processes of kinetic isotope fractionation, equilibrium fractionation between sulfate and water, and sulfide oxidation at low rates of sulfate reduction. The oxygen isotope ratio of dissolved pore water sulfate is a powerful tool for tracing microbial activity and sulfur cycling by the deep biosphere of deep-sea sediments.