990 resultados para 184-1143
Resumo:
Planktonic foraminiferal census counts were converted to sea surface temperature (SST) estimates using the modern analogue technique (MAT) for the middle-late Pliocene (4.0-2.37 Ma) in ODP Site 1125, north side of Chatham Rise, SW Pacific Ocean. MAT SST(warm) records range between 8°C and 20.5°C, and MAT SST(cold) records parallel that pattern but with a temperature range of 5-15°C. The modern position of Site 1125 is just north of the Subtropical Front and has an annual temperature range of ~14-18°C. Pliocene warmest temperatures are 1-2° warmer than modern summers, whereas cold season SST records are up to 6-10°C cooler than modern winters. Overall average temperatures at the site are 2-3°C cooler than modern temperatures during a time of sustained global warmth. Three major cold excursions centred on 3.35, 3.0, and 2.8 Ma showed warm season temperatures over 5°C colder than the last glacial maximum, experiencing temperatures typical of modern subantarctic waters. Two minor cold excursions at 2.7 Ma and 2.4 Ma experienced temperatures cooler than modern winters but not as cold as last glacial conditions. Cold season SSTs show a shift to warmer climate upward through the study interval, whereas warm season estimates remain essentially unchanged. We interpret the strong regional cooling of subtropical Southwest Pacific water through the middle-late Pliocene as having been caused by increased upwelling. It is also possible that the subtropical frontal zone moved north over the site in the Pliocene, however, this is considered the least likely interpretation. Our record of cool conditions in the Southwest Pacific corroborate evidence of cooler than modern conditions in other regions of the western Pacific through the mid-Pliocene despite overall global warming.
Resumo:
Sites 1147 (18°50.11'N, 116°33.28'E; water depth = 3246 m) and 1148 (18°50.17'N, 116°33.94'E; water depth = 3294 m) are located on the lowermost continental slope off southern China near the continent/ocean crust boundary of the South China Sea Basin. Site 1147 is located upslope ~0.45 nmi west of Site 1148. Three advanced piston corer holes at Site 1147 and two extended core barrel holes at Site 1148 were cored and combined into a composite (spliced) stratigraphic section, which provided a relatively continuous profile for the lower Oligocene to Holocene (Wang, Prell, Blum, et al., 2000, doi:10.2973/odp.proc.ir.184.2000; Jian, et al., 2001, doi:10.1007/BF02907088) for studying stratigraphy and paleoceanography. A total of 1047 planktonic foraminifers stable isotope measurements were performed on 975 samples covering the upper 409.58 meters composite depth (mcd) at ~42-cm intervals (Tables T1, T2), and a total of 1864 benthic foraminifers measurements were performed on 1650 samples in the upper 837.11 mcd at ~51-cm intervals (Tables T3, T4). We significantly improved the time resolution of the benthic stable isotope record in the upper 476.68 mcd by reducing the average sample spacing to ~29 cm. This translates into an average sampling resolution of ~16 k.y. for the Miocene sequence and ~8 k.y. for the Pliocene-Holocene interval, assuming a change in sedimentation rates from ~1.8 to ~3.5 cm/k.y., as suggested by shipboard stratigraphy. These data sets provide the basis for upcoming studies to establish an oxygen isotope stratigraphy and examine the Neogene evolution of deep and surface water signatures (temperature, salinity, and nutrients) in the South China Sea.
Resumo:
Ocean Drilling Program Site 1146 was drilled within a small rift basin on the midcontinental slope of the northern South China Sea. It is located at 19°27.4'N, 116°16.37'E, in 2092 m water depth. This site was drilled to recover records of Asian monsoon variability into the middle Miocene with temporal resolution sufficient for orbital-scale analyses. Here we present oxygen and carbon isotopic measurements of planktonic foraminifers (Globigerinoides ruber) and benthic foraminifers (Uvigerina peregrina and Cibicides wuellerstorfi) as well as a preliminary age model for the top 185 meters composite depth (mcd).
Resumo:
Bottom-simulating reflectors were observed beneath the southeastern slope of the Dongsha Islands in the South China Sea, raising the potential for the presence of gas hydrate in the area. We have analyzed the chemical and isotopic compositions of interstitial water, headspace gas, and authigenic siderite concretions from Site 1146. Geochemical anomalies, including a slight decrease of chlorine concentration in interstitial water, substantial increase of methane concentration in headspace gas, and 18O enrichment in the authigenic siderite concretion below 400 meters below seafloor are probably caused by the decomposition of gas hydrate. The low-chlorine pore fluids contain higher molecular-weight hydrocarbons and probably migrate to Site 1146 along faults or bedded planes.