992 resultados para 171-1051B


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upper Paleocene to lower Eocene sediments drilled at Ocean Drilling Program (ODP) Site 1051 (Blake Nose, off Florida) display well-defined orbital cycles, a detailed magnetic stratigraphy, and a suite of planktonic foraminiferal datums. We derived a cyclostratigraphy by using spectral analysis of high-resolution records of elemental concentrations obtained by an X-ray fluorescence (XRF) Core Scanner. XRF counts of iron serve as a proxy for the relative amount of terrestrial material. Sliding-window spectral analysis, bandpass filtering, and direct counting of precession and obliquity cycles yield minimum durations for magnetic polarity chrons C22 to C26 (~49 to ~61 Ma), calculations of sediment accumulation rates, as well as constraints on the timing of biostratigraphic and climatological events in the vicinity of the Initial Eocene Thermal Maximum (IETM). Durations of polarity chrons as represented in sediments drilled at Site 1051 were estimated using a conservative assignment of 41 k.y. for obliquity cycles and 21 k.y. for precession cycles. Combined polarity chrons C26r and C26n span 3.61 m.y., and chron C25r spans 1.07 m.y. Polarity chron C24r is estimated as 2.877 m.y. The interpretation of polarity chron C24n is ambiguous, but its duration is probably <1.23 m.y. Polarity chron C23r spans 0.53 m.y., chron C23n is 0.74 m.y., and chron C22r is 0.9 m.y. Spectral analysis through this interval indicates that spectral peaks shift through time and are related to changes in sedimentation rate in Site 1051. The sedimentation rates dramatically increased ~200 k.y. after the IETM and remained high for most of chron C24r.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Middle Eocene Climatic Optimum (MECO; ~ 40 million years ago [Ma]) is one of the most prominent transient global warming events in the Paleogene. Although the event is well documented in geochemical and isotopic proxy records at many locations, the marine biotic response to the MECO remains poorly constrained. We present new high-resolution, quantitative records of siliceous microplankton assemblages from the MECO interval of Ocean Drilling Program (ODP) Site 1051 in the subtropical western North Atlantic Ocean, which are interpreted in the context of published foraminiferal and bulk carbonate stable isotope (d18O and d13C) records. High diatom, radiolarian and silicoflagellate accumulation rates between 40.5 and 40.0 Ma are interpreted to reflect an ~ 500 thousand year (kyr) interval of increased nutrient supply and resultant surface-water eutrophication that was associated with elevated sea-surface temperatures during the prolonged onset of the MECO. Relatively low pelagic siliceous phytoplankton sedimentation accompanied the peak MECO warming interval and the termination of the MECO during an ~ 70 kyr interval centered at ~ 40.0 Ma. Following the termination of the MECO, an ~ 200-kyr episode of increased siliceous plankton abundance indicates enhanced nutrient levels between ~ 39.9 and 39.7 Ma. Throughout the Site 1051 record, abundance and accumulation rate fluctuations in neritic diatom taxa are similar to the trends observed in pelagic taxa, implying either similar controls on diatom production in the neritic and pelagic zones of the western North Atlantic or fluctuations in sea level and/or shelf accommodation on the North American continental margin to the west of Site 1051. These results, combined with published records based on multiple proxies, indicate a geographically diverse pattern of surface ocean primary production changes across the MECO. Notably, however, increased biosiliceous accumulation is recorded at both ODP Sites 1051 and 748 (Southern Ocean) in response to MECO warming. This may suggest that increased biosiliceous sediment accumulation, if indeed a widespread phenomenon, resulted from higher continental silicate weathering rates and an increase in silicic acid supply to the oceans over several 100 kyr during the MECO.