989 resultados para 135-841B
Resumo:
Fil: Pérez, Haydée Otilia.
Resumo:
The sedimentary sequence recovered at Site 840, on the Tonga frontal-arc platform, is 597.3 m thick and is subdivided into three lithostratigraphic units. The lowermost, late Miocene Unit III is 336.8 m thick and consists of a sequence of volcaniclastic mass-flow deposits (predominantly turbidites) interbedded with pelagic/hemipelagic deposits. Unit III was deposited in the forearc basin of the Lau volcanic arc, probably on a slope dominated by mass flows that built eastward from the ridge front and across the forearc. Upward through the unit a thinning and fining of individual turbidites takes place, interpreted to reflect a reduced sediment supply and a change from large to smaller flows. Decreasing volcanic activity with time is inferred from a decrease in coarse-grained volcaniclastic content in the upper part of the unit. The majority of the turbidites show the typical Bouma-type divisions, although both high- and low-density turbidity currents are inferred. High-density turbidity currents were especially common in the lower part of the unit. Geochemical analyses of detrital glass lie mainly in the low-K tholeiite field with a compositional range from basalt to rhyolite. A coherent igneous trend indicates derivation from a single volcanic source. This source was probably situated on the rifted part of the Lau-Tonga Ridge, within the present Lau backarc basin. The initial opening of the Lau Basin may have been around 6.0 m.y. ago. The onset of more extensive rifting, approximately 5.6 m.y. ago, is reflected in an increase in the silica content of volcanic glass. At the boundary toward Unit II, at approximately 5.25 Ma, an influx of thicker bedded and coarser grained volcaniclastic material is interpreted to reflect increasing volcanism and tectonism during the final breakup of the Lau-Tonga Ridge.
Resumo:
Integration of biostratigraphic and magnetostratigraphic results from Leg 135 sites has given additional information as to the position and reliability of various bioevents compared with previously published results. Two sites (834: Gilbert to Brunhes; and 836: Brunhes) provided excellent magnetic and biostratigraphic data. From these it is suggested that some bioevents are older than previously recorded: the first appearances (FAs) of Emiliania huxleyi (within the Brunhes Chron, at the same level as the FA of Helicosphaera inversa) and Globorotalia (Truncorotalia) truncatulinoides (within the upper Gauss Chron), and the last appearance (LA) of Gr. (Tr.) tosaensis (upper Matuyama Chron). The FA of Gr. (Tr.) crassaformis hessi is variable, but the oldest occurrence is just below the Cobb Mountain Subchron. Other key bioevents, such as the LAs of Discoaster pentaradiatus (just above the Réunion Subchron), D. tamalis (within the lower reversed part of the Matuyama Chron), Sphenolithus (lower Gauss Chron), and Amaurolithus primus (topmost Gilbert Chron) appear higher than previously recorded. Some key biostratigraphic taxa, such as Globigerinoides quadrilobatus fistulosus, Pulleniatina finalis, P. primalis, and Sphaeroidinella dehiscens, are either rare or their distribution is sporadic to the extent that they are unsuitable for biostratigraphic use in the area studied. Because of the rarity of P. primalis, the FA of Globorotalia (Globorotalia) multicamerata has been used to mark the base of Zone N17B. Though levels are present at most sites in which populations of Pulleniatina are sinistrally coiled, it is difficult to equate these coiling changes with previous records.
Resumo:
Diverse and well-preserved planktonic foraminifers were recovered from six sites (834-839) drilled in the Lau Basin. Planktonic faunas from the Tongan Platform sites varied from those of the Lau Basin sites by being less well preserved (Site 840) to being very poorly preserved and very sparse (Site 841); at Site 841 most samples were barren. All sites penetrated a volcaniclastic sequence in which thick ash beds were encountered; foraminifer populations within the ash beds were often very small, making it difficult to obtain biostratigraphic data. No hiatuses were encountered in the upper Miocene to Pleistocene sections of the Lau Basin, but a possible break occurs at Site 840 on the Tongan Platform. Site 834 penetrated through a Quaternary-Pliocene sequence overlying basaltic basement, and topmost Miocene (Zone N17B) sediments interbedded within the volcanic sequence. Site 835 penetrated into the lower Pliocene (Zones N19 to N19-20). Site 836 penetrated the shortest section, with Zone N22 {Globorotalia (Truncorotalia) crassaformis hessi Subzone) directly overlying basalts. Site 837 penetrated into the basal part of Zone N22 (Globigerinoides quadrilobatus fistulosus Subzone) overlying basalt. Site 838 failed to encounter basalts, with the oldest sediment being from Zone N22 (Globigerinoides quadrilobatus fistulosus Subzone). Site 839, within the same basin as Site 838, located Zone N22 (Globigerinoides quadrilobatus fistulosus Subzone) sediments directly overlying igneous basement. Site 840 penetrated into the upper Miocene Zone N17A without encountering any major unconformity. Site 841, studied mainly from core-catcher samples, penetrated a Quaternary to questionable upper Miocene sequence that was in fault contact with middle Miocene (Zones N8 to N9) sediments. For the Lau Basin sites, reworking was encountered only in Sites 834 and 835. Site 834 was drilled adjacent to the Lau Ridge, on which are developed numerous reef al and shallow-water environments, where erosional conditions could have been expected during sea-level lowstands. Site 835 was drilled in a narrow basin that has been remote from these erosional influences; slumping and erosion of material from the adjacent basin slopes appears to have been the source of the reworking. For the Tongan Platform sites, reworking was observed only in the lower part of the upper Miocene section at Site 841, where late Eocene larger foraminifers are present in conglomerates and grits. The presence of Globorotalia (Globorotalia) multicamerata and small specimens of Sphaeroidinellopsis spp. in the Pleistocene of Site 840 may indicate reworking, but this is not clear. Unit I, which marks a reduction in volcanic activity in the Lau Basin, ranges in age from the lower part of Zone N22 (Globigerinoides quadrilobatus fistulosus Subzone) at Sites 834 and 835, to within Zone N22 (Globorotalia crassaformis hessi Subzone) at Sites 836 to 838, and within the upper part of Zone N22 (Bolliella praeadamsi Subzone) at Site 839. Units II and III are generally represented by thick to very thick ash beds, which generally contain low-diversity and often poorly preserved assemblages. Igneous sources seem to have remained important contributors of sediment up to the present day.
Resumo:
The average total organic carbon (TOC) content obtained after Rock-Eval/TOC analysis of 156 sediment samples from the eight sites cored during Leg 135 is 0.05%. Hence, the TOC content of Leg 135 sediments is extremely low. The organic matter that is present in these samples is probably mostly reworked and oxidized material. Ten sediment samples were selected for extraction and analysis by gas chromatography and gas chromatography-mass spectrometry. Very low amounts of extractable hydrocarbons were obtained and some aspects of the biomarker distributions suggest that these hydrocarbons are not representative of the organic matter indigenous to the samples. A sample of an oil seep from Pili, Tongatapu was also analyzed. The seep is a biodegraded, mature oil that shows many characteristics in common with previously published analyses of oil seeps from Tongatapu. Biomarker evidence indicates that its source is a mature, marine carbonate of probable Late Cretaceous-Early Tertiary age. The source rock responsible for the Tongatapu oil seeps remains unknown.