966 resultados para 1105
Resumo:
In the Ceramiaceae, one of the largest families of the red algae, there are from 1 to 4000 nuclei in each vegetative cell, but each tribe is homogeneous with respect to the uninucleate/multinucleate character state, except for the Callithamnieae. The goals of this study were to analyze rbcL gene sequences to clarify the evolution of taxa within the tribe Callithamnieae and to evaluate the potential evolutionary significance of the development of multinucleate cells in certain taxa. The genus Aglaothamnion, segregated from Callithamnion because it is uninucleate, was paraphyletic in all analyses. Callithamnion (including Aristothamnion) was monophyletic although not robustly so, apparently due to variations between taxa in rate of sequence evolution. Morphological synapomorphies were identified at different depths in the tree, supporting the molecular phylogenetic analysis. The uninucleate character state is ancestral in this tribe. The evolution of multinucleate cells has occurred once in the Callithamnieae. Multiple nuclei in each cell may combine the benefits of small C values (rapid cell cycle) with large cells (permitting morphological elaboration) while maintaining a constant ratio of nuclear volume: cytoplasmic volume.
Resumo:
To obtain enough quantity of osteogenic cells is a challenge for successful cell therapy in bone defect treatment, and cell numbers were usually achieved by culturing bone marrow cells in a relatively long duration. This study reported a simple and cost effective method to enhance the number of MSCs by collecting and replating the non-adherent cell population of marrow MSCs culture. Bone marrow MSCs were isolated from 11 patients, cultured at a density of 1×105/cm2 to 1×106/cm2 in flasks. For the first three times of media change, the floating cells were centrifuged and replated in separate flasks. The total number of cells in both the primary and replating flasks were counted at day 21. Cell proliferation rate, potentials for osteogenic, chondrognenic, and adipogenic differentiation were examined in both cell types in vitro. In-vivo osteogenic potentials of the cells were also tested in mice implantation model. The results showed that MSCs derived from non-adherent cell population of marrow cell cultures have similar cell proliferation and differentiation potentials as the originally attached MSCs in vitro. When implanted with HA-TCP materials subcutaneously in SCID mice, newly formed bony tissues were found in both cell type groups with osteocalcin expression. We have obtained 36.6% (20.70%-44.97%) more MSCs in the same culture period when the non-adherent cell populations were collected. The findings confirmed that the non-adherent cell population in the bone marrow culture is a complementary source of MSCs, collecting these cells is a simple and cost-effective way to increase MSCs numbers and reduce the time required for culturing MSCs for clinical applications.