984 resultados para 110-672A
Resumo:
The core structure of <110] superdislocations in L10 TiAl was investigated with a view to clarifying their dissociation abilities and the mechanisms by which they may become sessile by self-locking. A detailed knowledge of the fine structure of dislocations is essential in analysing the origin of the various deformation features. Atomistic simulation of the core structure and glide of the screw <110] superdislocation was carried out using a bond order potential for ?-TiAl. The core structure of the screw <110] superdislocation was examined, starting with initial unrelaxed configurations corresponding to various dislocation dissociations discussed in the literature. The superdislocation was found to possess in the screw orientation either planar (glissile) or non-planar (sessile) core structures. The response of the core configurations to externally applied shear stress was studied. Some implications were considered of the dissociated configurations and their response to externally applied stress on dislocation dynamics, including the issue of dislocation decomposition, the mechanism of locking and the orientation dependence of the dislocation substructure observed in single-phase ?-TiAl. An unexpectedly rich and complex set of candidate core structures, both planar and non-planar, was found, the cores of which may transform under applied stress with consequent violation of Schmid's law.
Resumo:
Using density functional theory calculations with HSE 06 functional, we obtained the structures of spin-polarized radicals on rutile TiO2(110), which is crucial to understand the photooxidation at the atomic level, and further calculate the thermodynamic stabilities of these radicals. By analyzing the results, we identify the structural features for hole trapping in the system, and reveal the mutual effects among the geometric structures, the energy levels of trapped hole states and their hole trapping capacities. Furthermore, the results from HSE 06 functional are compared to those from DFT + U and the stability trend of radicals against the number of slabs is tested. The effect of trapped holes on two important steps of the oxygen evolution reaction, i.e. water dissociation and the oxygen removal, is investigated and discussed.
Resumo:
The ground state potential energy surface for CO chemisorption across Pd{110} has been calculated using density functional theory with gradient corrections at monolayer coverage. The most stable site corresponds well with the experimental adsorption heat, and it is found that the strength of binding to sites is in the following order: pseudo-short-bridge>atop>long-bridge>hollow. Pathways and transition states for CO surface diffusion, involving a correlation between translation and orientation, are proposed and discussed. (C) 1997 American Institute of Physics.
Resumo:
Ab initio total energy calculations have been performed for CO chemisorption on Pd(110). Local density approximation (LDA) calculations yield chemisorption energies which are significantly higher than experimental values but inclusion of the generalised gradient approximation (GGA) gives better agreement. In general, sites with higher coordination of the adsorbate to surface atoms lead to a larger degree of overbinding with LDA, and give larger corrections with GGA. The reason is discussed using a first-order perturbation approximation. It is concluded that this may be a general failure of LDA for chemisorption energy calculations. This conclusion may be extended to many surface calculations, such as potential energy surfaces for diffusion.
Resumo:
The structure of the (2 X 1)CO-Pd(110) surface phase has been determined by LEED intensity analysis. The CO molecule is found to be adsorbed in an atop site, tilted by 11-degrees +/- 4-degrees with respect to the surface normal, with a C-O bond length of 1.16 +/- 0.04 angstrom. Interestingly, the C-O vibrational frequency for this system (2003 cm-1) is virtually identical to the frequency observed for the (2 X 1)CO-Ni(110) surface phase (1998 cm-1) which a previous LEED study has shown involves bridge bound CO molecules. The result indicates that care must be taken in assigning site symmetries on the basis of C-O stretching frequencies alone.
Resumo:
Molecularly adsorbed CO on Pd{110} has been shown (R. Raval et al., Chem. Phys. Lett. 167 (1990) 391, ref. [1]) to induce a substantial reconstruction of the surface in the coverage range 0.3 <theta less-than-or-equal-to 0.75. Throughout this coverage range, the adsorbate-covered reconstructed surface exhibits a (4 x 2) LEED pattern. However, the exact nature of the reconstruction remains uncertain. We have conducted a LEED I(E) "fingerprinting" analysis of the CO/Pd{110}-(4 x 2) structure in order to establish the type of reconstruction induced in the metal surface. This study shows that the LEED I(E) profiles of the integral order and appropriate half-order beams of the CO/Pd{110}-(4 x 2) pattern closely resemble the I(E) profiles theoretically calculated for a Pd{110}-(1 x 2) missing-row structure. Additionally, there is a strong resemblance to the experimental LEED I(E) profiles for the Cs/Pd{110}-(1 x 2) structure which has also been shown to exhibit the missing-row structure. On the basis of this evidence we conclude that the CO/Pd{110}-(4 x 2) LEED pattern arises from a missing-row reconstruction of the Pd{110} surface which gives rise to a strong underlying (1 x 2) pattern plus a poorly ordered CO overlayer which produces weak, diffuse fourth-order spots in the LEED pattern.
Resumo:
Référence bibliographique : Rol, 59673
Resumo:
Référence bibliographique : Rol, 60601
Resumo:
Référence bibliographique : Rol, 60602
Resumo:
Référence bibliographique : Rol, 60603
Resumo:
Référence bibliographique : Rol, 60604
Resumo:
Référence bibliographique : Rol, 60800