507 resultados para 1082
Resumo:
Objective: To assess the role of plasma total homocysteine (tHcy) concentrations and homozygosity for the thermolabile variant of the methylenetetrahydrofolate reductase (MTHFR) C677T gene as risk factors for retinal vascular occlusive disease.
Design: Retinal vein occlusion (RVO) is an important cause of vision loss. Early meta-analyses showed that tHcy was associated with an increased risk of RVO, but a significant number of new studies have been published. Participants and/or Controls: RVO patients and controls.
Methods: Data sources included MEDLINE, Web of Science, and PubMed searches and searching reference lists of relevant articles and reviews. Reviewers searched the databases, selected the studies, and then extracted data. Results were pooled quantitatively using meta-analytic methods.
Main Outcome Measures: tHcy concentrations and MTHFR genotype.
Results: There were 25 case-control studies for tHcy (1533 cases and 1708 controls) and 18 case-control studies for MTHFR (1082 cases and 4706 controls). The mean tHcy was on average 2.8 mol/L (95% confidence
interval [CI], 1.8 –3.7) greater in the RVO cases compared with controls, but there was evidence of between-study heterogeneity (P0.001, I2 93%). There was funnel plot asymmetry suggesting publication bias. There was no evidence of association between homozygosity for the MTHFR C677T genotype and RVO (odds ratio [OR] 1.20; 95% CI, 0.84–1.71), but again marked heterogeneity (P 0.004, I2 53%) was observed.
Conclusions: There was some evidence that elevated tHcy was associated with RVO, but not homozygosity for the MTHFR C677T genotype. Both analyses should be interpreted cautiously because of marked heterogeneity between the study estimates and possible effect of publication bias on the tHcy findings.
Financial Disclosure(s): The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Resumo:
We present results of experiments studying the efficiency of high harmonic generation from a gas target using the TITANIA krypton fluoride laser at the Rutherford Appleton Laboratory. The variation of harmonic yield for the 7th to 13th harmonics (355-191 Angstrom) is studied as a function of the backing pressure of a solenoid valve gas jet and of the axial position of the laser focus relative to the centre of the gas jet nozzle. Harmonic energies up to 1 mu J were produced in helium and neon targets from laser energies of approximately 200 mJ. This corresponds to absolute conversion efficiencies of up to 5 x 10(-6).
Resumo:
In this study we explored the potential role of the complement derived anaphylatoxin C5a and the expression of its receptor in mouse brain. Using in situ hybridization, we found that C5a receptor messenger RNA is expressed in mouse brain. In response to intraventricular kainic acid injection, there was marked increase in the C5a receptor messenger RNA expression, particularly in hippocampal formation and cerebral cortex. C5a ligand-binding autoradiography confirmed the functional expression and elevation of the C5a receptor post-lesioning. The expression of Cia receptor messenger RNA in brain was confirmed by northern blot hybridization of total RNA from neuronal and glial cells in vitiro. Based on these findings we explored the role of C5a in mechanisms of signal transduction in brain cells. Treatment of primary cultures of mouse astrocytes with human recombinant C5a resulted in the activation of mitogen-activated extracellular signal-regulated protein kinase. This response appeared to be mediated by the C5a receptor since astrocyte cultures derived from C5a receptor knockout mice were not responsive to the treatment. Understanding the regulation of C5a receptor in brain and mechanisms by which pro-inflammatory C5a modulates specific signal transduction pathways in brain cells is crucial to studies of inflammatory mechanisms in neurodegeneration. (C) 1998 IBRO. Published by Elsevier Science Ltd.
Resumo:
In the double-detonation scenario for Type Ia supernovae, it is suggested that a detonation initiates in a shell of helium-rich material accreted from a companion star by a sub-Chandrasekhar-mass white dwarf. This shell detonation drives a shock front into the carbon-oxygen white dwarf that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the white dwarf. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of Type Ia supernovae since the explosion ejecta are surrounded by the products of explosive helium burning in the shell. Recently, however, it was proposed that detonations might be possible for much less massive helium shells than previously assumed (Bildsten et al.). Moreover, it was shown that even detonations of these minimum helium shell masses robustly trigger detonations of the carbon-oxygen core (Fink et al.). Therefore, it is possible that the impact of the helium layer on observables is less than previously thought. Here, we present time-dependent multi-wavelength radiative transfer calculations for models with minimum helium shell mass and derive synthetic observables for both the optical and ? -ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive helium shells were considered. Our models predict light curves that cover both the range of brightnesses and the rise and decline times of observed Type Ia supernovae. However, their colors and spectra do not match the observations. In particular, their B - V colors are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the helium shell of the Fink et al. models which contain significant amounts of titanium and chromium. Using a toy model, we also show that the burning products of the helium shell depend crucially on its initial composition. This leads us to conclude that good agreement between sub-Chandrasekhar-mass explosions and observed Type Ia supernovae may still be feasible but further study of the shell properties is required.
Resumo:
We report on a pilot study of a novel observing technique, defocussed transmission spectroscopy, and its application to the study of exoplanet atmospheres using ground-based platforms. Similar to defocussed photometry, defocussed transmission spectroscopy has an added advantage over normal spectroscopy in that it reduces systematic errors due to flat-fielding, PSF variations, slit-jaw imperfections and other effects associated with ground-based observations. For one of the planetary systems studied, WASP-12b, we report a tentative detection of additional Na absorption of 0.12+/-0.03[+0.03]% during transit using a 2A wavelength mask. After consideration of a systematic that occurs mid-transit, it is likely that the true depth is actually closer to 0.15%. This is a similar level of absorption reported in the atmosphere of HD209458b (0.135+/-0.017%, Snellen et al. 2008). Finally, we outline methods that will improve the technique during future observations, based on our findings from this pilot study.
Resumo:
This paper studies the dynamical properties of a system with distributed backlash and impact phenomena. This means that it is considered a chain of masses that interact with each other solely by means of backlash and impact phenomena. It is observed the emergence of non-linear phenomena resembling those encountered in the Fermi-Pasta-Ulam problem.
Resumo:
A new general fitting method based on the Self-Similar (SS) organization of random sequences is presented. The proposed analytical function helps to fit the response of many complex systems when their recorded data form a self-similar curve. The verified SS principle opens new possibilities for the fitting of economical, meteorological and other complex data when the mathematical model is absent but the reduced description in terms of some universal set of the fitting parameters is necessary. This fitting function is verified on economical (price of a commodity versus time) and weather (the Earth’s mean temperature surface data versus time) and for these nontrivial cases it becomes possible to receive a very good fit of initial data set. The general conditions of application of this fitting method describing the response of many complex systems and the forecast possibilities are discussed.
Resumo:
This manuscript analyses the data generated by a Zero Length Column (ZLC) diffusion experimental set-up, for 1,3 Di-isopropyl benzene in a 100% alumina matrix with variable particle size. The time evolution of the phenomena resembles those of fractional order systems, namely those with a fast initial transient followed by long and slow tails. The experimental measurements are best fitted with the Harris model revealing a power law behavior.