1000 resultados para 1,3-Butadiene per unit sediment mass
Resumo:
We present a 15 kyr sea surface temperature (SST) record for a high sedimentation rate core (KNR51-29GGC) from the Feni Drift off of Ireland, based on an organic geochemical technique for paleotemperature estimation, U37 K'. We compare the U37 K' temperature record to planktonic foraminiferal delta18O and foraminiferal assemblage SST estimates from the same sample horizons. U37 K' gives SST estimates of 13°C for the early deglacial and 18°C for the Holocene and Recent, whereas assemblages give estimates of 9°C and 13°C, respectively. As in nearby core V23-81, we find Ash Zone 1, the Younger Dryas increase in Neogloboquadrina pachyderma sinistral abundance, and maximum abundance of this species during glaciation. N. pachyderma dextral oxygen isotopic analyses have a late glacial to interglacial range of 1.5 per mil. A reduction of about 1 per mil in delta18O occurred at about 12 ka, whereas U37 K' and the foraminiferal fauna indicate a 2°C warming. This implies a 0.9 per mil salinity effect on delta18O which we attribute to meltwater freshening. All three parameters indicate cooling during the Younger Dryas. U37 K' SST estimates show that the major shift from deglacial to interglacial temperatures occurred after the Younger Dryas in termination 1b, in contrast to the assemblage data, which show this jump in SST at the end of the glaciation during termination Ia. Differences between the two SST estimators, which may result from their different (floral versus faunal) sources, are more pronounced between transitions Ia and Ib. This may reflect different habitats under the unusual sea surface conditions of the deglaciation.
Resumo:
Lithology, lithic petrology, planktonic foraminiferal abundances, and clastic grain sizes have been determined in a 30 m-long core recovered from the Barra Fan off northwest Scotland. The record extends back to around 45 kyr B.P., with sedimentation rates ranging between 50 and 200 cm/kyr. The abundance of ice-rafted debris indicates 16 glacimarine events, including temporal equivalents to Heinrich events 1-4. Enhanced concentrations of basaltic material derived from the British Tertiary Province suggest that the glacimarine sediments record variations in a glacial source on the Hebrides shelf margin. Glacimarine zones are separated by silty intervals with high planktonic foraminifera concentrations that reflect an interstadial circulation regime in the Rockall Trough. The results suggest that the last British Ice Sheet fluctuated with a periodicity of 2000-3000 years, in common with the Dansgaard-Oeschger climate cycle.
Resumo:
Black shales possessing high concentrations of organic carbon (Foresman, 1978, doi:10.2973/dsdp.proc.40.111.1978) were deposited in many parts of the proto South Atlantic Ocean during the Cretaceous period (Bolli et al., 1978, doi:10.2973/dsdp.proc.40.104.1978). The way such sediments accumulated is not fully understood, but is likely to have occurred through a combination of low oxygen availability and abundant supply of organic matter. Thin, centimetre-thick layers of black shales are commonly interbedded with thicker layers of organic carbon-deficient, green claystones, as found in strata of Aptian to Coniacian age, at Deep Sea Drilling Project (DSDP) Site 530, in the southern Angola Basin (Hay et al., 1982, doi:10.1130/0016-7606(1982)93<1038:SAAOOC>2.0.CO;2) and elsewhere. These differences in carbon content and colour reflect the conditions of deposition, and possibly variations in the supply of organic matter (Summerhayes and Masran, 1983, doi:10.2973/dsdp.proc.76.116.1983; Dean and Gardner, 1982). We have compared, using organic geochemical methods the compositions of organic matter in three pairs of closely-bedded black and green Cenomanian claystones obtained from Site 530. Kerogen analyses and distributions of biological markers show that the organic matter of the black shales is more marine and better preserved than that of the green claystones.
Resumo:
Centennial-to-millennial scale records from IODP Site U1387, drilled during IODP Expedition 339 into the Faro Drift at 558 m water depth, now allow evaluating the climatic history of the upper core of the Mediterranean Outflow (MOW) and of the surface waters in the northern Gulf of Cadiz during the early Pleistocene. This study focuses on the period from Marine Isotope Stage (MIS) 29 to 34, i.e. the interval surrounding extreme interglacial MIS 31. Conditions in the upper MOW reflect obliquity, precession and millennial-scale variations. The benthic d18O signal follows obliquity with the exception of an additional, smaller d18O peak that marks the MIS 32/31 transition. Insolation maxima (precession minima) led to poor ventilation and a sluggish upper MOW core, whereas insolation minima were associated with enhanced ventilation and often also increased bottom current velocity. Millennial-scale periods of colder sea-surface temperatures (SST) were associated with short-term maxima in flow velocity and better ventilation, reminiscent of conditions known from MIS 3. A prominent contourite layer, coinciding with insolation cycle 100, was formed during MIS 31 and represents one of the few contourites developing within an interglacial period. MIS 31 surface water conditions were characterized by an extended period (1065-1091 ka) of warm SST, but SST were not much warmer than during MIS 33. Interglacial to glacial transitions experienced 2 to 3 stadial/interstadial cycles, just like their mid-to-late Pleistocene counterparts. Glacial MIS 30 and 32 recorded periods of extremely cold (< 12°C) SST that in their climatic impact were comparable to the Heinrich events of the mid and late Pleistocene. Glacial MIS 34, on the other hand, was a relative warm glacial period off southern Portugal. Overall, surface water and MOW conditions at Site U1387 show strong congruence with Mediterranean climate, whereas millennial-scale variations are closely linked to North Atlantic circulation changes.
Resumo:
Sea ice algae have been widely discussed as a potential food source for pelagic and benthic animals in ice-covered waters, specifically in the light of current substantial changes in the Arctic ice regime. Stomach and gut contents of the Arctic nearshore lysianassid amphipod Onisimus litoralis sampled from February to May 2003 indicate that Arctic ice algae were dominant food no earlier than the onset of ice melt. Crustaceans, common prey in a previous study, were absent in stomachs and guts during the survey period. Our data support the concept that sea ice-derived organic carbon is of specific relevance for Arctic plankton and benthos during the period of ice melt.
Resumo:
The meiobenthic community of Potter Cove (King George Island, west Antarctic Peninsula) was investigated, focusing on responses to summer/winter conditions in two study sites contrasting in terms of organic matter inputs. Meiofaunal densities were found to be higher in summer and lower in winter, although this result was not significantly related to the in situ availability of organic matter in each season. The combination of food quality and competition for food amongst higher trophic levels may have played a role in determining the standing stocks at the two sites. Meiobenthic winter abundances were sufficiently high to infer that energy sources were not limiting during winter, supporting observations from other studies for both shallow water and continental shelf Antarctic ecosystems. Recruitment within meiofaunal communities was coupled to the seasonal input of fresh detritus for harpacticoid copepods but not for nematodes, suggesting that species-specific life history or trophic features form an important element of the responses observed.
Resumo:
The lipids of a Pliocene and a Cretaceous sample from Site 462 were analyzed to assess their source and diagenetic history. Judging from the distributions of the n-alkanes, n-fatty acids, n-alkylcyclohexanes and molecular markers, they are autochthonous, of marine origin, and deposited under oxic paleoenvironmental conditions of sedimentation. The stereochemistry of the various molecular markers (e.g., triterpanes and steranes) of the Pliocene sample indicates that the lipids are geologically mature. This supports the hypothesis of sediment recycling from older formations by turbidite redistribution into the Nauru Basin
Resumo:
Biogeochemical measurements in sediment cores collected with a TV-MUC in the Black Sea during MSM15/1, Northwest Crimea (HYPOX Project), at water depths between 105-207 m. Sampling was performed along gradient of oxygen bottom water concentrations between oxic (150 µmol L-1), variable hypoxic (3-60 µmol L-1 O2) and anoxic, sulfidic conditions. concentrations of organic carbon (Corg) and nitrogen (N) were measured on finely powdered, freeze-dried subsamples of sediment using a using a Fisons NA-1500 elemental analyzer. For organic carbon determination samples were pre-treated with 12.5% HCl to remove carbonates. Chlorophyll a (chl a), phaeopigments (PHAEO) and chloroplastic pigment equivalents (CPE) was measured according to Schubert et al., (2005) and total hydrolyzable amino acids (THAA) and single amino acid: ASP, GLU, SER, HIS, GLY, THR, ARG, ALA, TYR, MET, VAL, PHE, ILE, LEU, LYS following Dauwe et al., 1998.
Resumo:
Surface and thermocline conditions of the eastern tropical Indian Ocean were reconstructed through the past glacial-interglacial cycle by using Mg/Ca and alkenone-paleothermometry, stable oxygen isotopes of calcite and seawater, and terrigenous fraction performed on sediment core GeoB 10038-4 off SW Sumatra (~6°S, 103°E, 1819 m water depth). Results show that annual mean surface and thermocline temperatures varied differently and independently, and suggest that surface temperatures have been responding to southern high-latitude climate, whereas the more variable thermocline temperatures were remotely controlled by changes in the thermocline temperatures of the North Indian Ocean. Except for glacial terminations, salinity proxies indicate that changing intensities of the boreal summer monsoon did not considerably affect annual mean conditions off Sumatra during the past 133,000 years. Our results do not show a glacial-interglacial pattern in the thermocline conditions and reject a linear response of the tropical Indian Ocean thermocline to mid- and high-latitude climate change. Alkenone-based surface temperature estimates varied in line with the terrigenous fraction of the sediment and the East Asian winter monsoon proxy records at the precession band suggestive of monsoon (sea level) to be the dominant control on alkenone temperatures in the eastern tropical Indian Ocean on sub-orbital (glacial-interglacial) timescales.
Recent ostracods in surface sediment samples from Admiralty Bay, King George Island, West Antarctica
Resumo:
Ostracods from Admiralty Bay on King George Island (South Shetland Islands) represent 29 podocopid species, belonging to 19 genera, one cladocopid and six myodocopid species. They were recovered from Recent marine and/or glacio-marine sediment samples from water depths of up to 520 m. These ostracods constitute a variable assemblage, which is overall typical for the Antarctic environment. Shallow-water assemblages tend to be more variable in terms of frequencies and species richness than deep-water assemblages. The later are low in numbers and remain relatively high diversities. Overall, no linear relation between ostracod assemblage-composition and environmental features analyzed was recognized.
Resumo:
Due to its strong influence on heat and moisture exchange between the ocean and the atmosphere, sea ice is an essential component of the global climate system. In the context of its alarming decrease in terms of concentration, thickness and duration, understanding the processes controlling sea-ice variability and reconstructing paleo-sea-ice extent in polar regions have become of great interest for the scientific community. In this study, for the first time, IP25, a recently developed biomarker sea-ice proxy, was used for a high-resolution reconstruction of the sea-ice extent and its variability in the western North Pacific and western Bering Sea during the past 18,000 years. To identify mechanisms controlling the sea-ice variability, IP25 data were associated with published sea-surface temperature as well as diatom and biogenic opal data. The results indicate that a seasonal sea-ice cover existed during cold periods (Heinrich Stadial 1 and Younger Dryas), whereas during warmer intervals (Bølling-Allerød and Holocene) reduced sea ice or ice-free conditions prevailed in the study area. The variability in sea-ice extent seems to be linked to climate anomalies and sea-level changes controlling the oceanographic circulation between the subarctic Pacific and the Bering Sea, especially the Alaskan Stream injection though the Aleutian passes.
Resumo:
To reconstruct variability of the West African monsoon and associated vegetation changes on precessional and millennial time scales, we analyzed a marine sediment core from the continental slope off Senegal spanning the past 44,000 years (44 ka). We used the stable hydrogen isotopic composition (dD) of individual terrestrial plant wax n-alkanes as a proxy for past rainfall variability. The abundance and stable carbon isotopic composition (d13C) of the same compounds were analyzed to assess changes in vegetation composition (C3/C4 plants) and density. The dD record reveals two wet periods that coincide with local maximum summer insolation from 38 to 28 ka and 15 to 4 ka and that are separated by a less wet period during minimum summer insolation. Our data indicate that rainfall intensity during the rainy season throughout both wet humid periods was similar, whereas the length of the rainy season was presumably shorter during the last glacial than during the Holocene. Additional dry intervals are identified that coincide with North Atlantic Heinrich stadials and the Younger Dryas interval, indicating that the West African monsoon over tropical northwest Africa is linked to both insolation forcing and high-latitude climate variability. The d13C record indicates that vegetation of the western Sahel was consistently dominated by C4 plants during the past 44 ka, whereas C3-type vegetation increased during the Holocene. Moreover, we observe a gradual ending of the Holocene humid period together with unchanging ratio of C3 to C4 plants, indicating that an abrupt aridification due to vegetation feedbacks is not a general characteristic of this time interval.