982 resultados para 040105 Climatology (excl. Climate Change Processes)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regional information on climate change is urgently needed but often deemed unreliable. To achieve credible regional climate projections, it is essential to understand underlying physical processes, reduce model biases and evaluate their impact on projections, and adequately account for internal variability. In the tropics, where atmospheric internal variability is small compared with the forced change, advancing our understanding of the coupling between long-term changes in upper-ocean temperature and the atmospheric circulation will help most to narrow the uncertainty. In the extratropics, relatively large internal variability introduces substantial uncertainty, while exacerbating risks associated with extreme events. Large ensemble simulations are essential to estimate the probabilistic distribution of climate change on regional scales. Regional models inherit atmospheric circulation uncertainty from global models and do not automatically solve the problem of regional climate change. We conclude that the current priority is to understand and reduce uncertainties on scales greater than 100 km to aid assessments at finer scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Horticulture may be defined as the intensive cultivation and harvesting of plants for financial, environmental and social profit. Evidence for the occurrence of climate change more generally and reasons why this process is happening with such rapidity are discussed. These changes are then considered in terms of the effects which might alter the options for worldwide intensive horticultural cultivation of plants and its interactions with other organisms. Potentially changing climates will have considerable impact upon horticultural processes and productivity across the globe . Climate change will alter the growth patterns and capabilities for flowering and fruiting of many perennial and annual horticultural plants. In some regions perennial fruit crops are likely to experience substantial difficulties because of altered seasonal conditions affecting dormancy, acclimation and subsequent flowering and fruiting. Elsewhere these crops may benefit from the effects of climate change as a result of reduced cold damage and increased length of the growing season. There will be considerable effects for aerial and edaphic microbes invertebrate and vertebrate animals which have benign and pathogenic interactions with horticultural plants. Microbial activity and as a consequence soil fertility may alter. New pests and pathogens may become prevalent and damaging in areas where the climate previously excluded their activity. Vital resources such as water and nutrients may become scarce in some regions reducing opportunities for growing horticultural crops. Wind and windiness are significant factors governing the success of horticultural plants and the scale of their impacts may change as climate alters. Damaging winds could limit crop growing in areas where previously it flourished. Forms of macro- and micro-landscaping will change as the spectrum of plants which can be cultivated alters and the availability of resources and their cost changes driven by scarcities brought about by climate change. The horticultural economy of India as it may be affected by climate change is described as an individual example in a detailed study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precipitation over western Europe (WE) is projected to increase (decrease) roughly northward (equatorward) of 50°N during the 21st century. These changes are generally attributed to alterations in the regional large-scale circulation, e.g., jet stream, cyclone activity, and blocking frequencies. A novel weather typing within the sector (30°W–10°E, 25–70°N) is used for a more comprehensive dynamical interpretation of precipitation changes. A k-means clustering on daily mean sea level pressure was undertaken for ERA-Interim reanalysis (1979–2014). Eight weather types are identified: S1, S2, S3 (summertime types), W1, W2, W3 (wintertime types), B1, and B2 (blocking-like types). Their distinctive dynamical characteristics allow identifying the main large-scale precipitation-driving mechanisms. Simulations with 22 Coupled Model Intercomparison Project 5 models for recent climate conditions show biases in reproducing the observed seasonality of weather types. In particular, an overestimation of weather type frequencies associated with zonal airflow is identified. Considering projections following the (Representative Concentration Pathways) RCP8.5 scenario over 2071–2100, the frequencies of the three driest types (S1, B2, and W3) are projected to increase (mainly S1, +4%) in detriment of the rainiest types, particularly W1 (−3%). These changes explain most of the precipitation projections over WE. However, a weather type-independent background signal is identified (increase/decrease in precipitation over northern/southern WE), suggesting modifications in precipitation-generating processes and/or model inability to accurately simulate these processes. Despite these caveats in the precipitation scenarios for WE, which must be duly taken into account, our approach permits a better understanding of the projected trends for precipitation over WE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global climate changes during the Cenozoic (65.5–0 Ma) caused major biological range shifts and extinctions. In northern Europe, for example, a pattern of few endemics and the dominance of wide-ranging species is thought to have been determined by the Pleistocene (2.59–0.01 Ma) glaciations. This study, in contrast, reveals an ancient subsurface fauna endemic to Britain and Ireland. Using a Bayesian phylogenetic approach, we found that two species of stygobitic invertebrates (genus Niphargus) have not only survived the entire Pleistocene in refugia but have persisted for at least 19.5 million years. Other Niphargus species form distinct cryptic taxa that diverged from their nearest continental relative between 5.6 and 1.0 Ma. The study also reveals an unusual biogeographical pattern in the Niphargus genus. It originated in north-west Europe approximately 87 Ma and underwent a gradual range expansion. Phylogenetic diversity and species age are highest in north-west Europe, suggesting resilience to extreme climate change and strongly contrasting the patterns seen in surface fauna. However, species diversity is highest in south-east Europe, indicating that once the genus spread to these areas (approximately 25 Ma), geomorphological and climatic conditions enabled much higher diversification. Our study highlights that groundwater ecosystems provide an important contribution to biodiversity and offers insight into the interactions between biological and climatic processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors examine partnerships as a policy strategy for climate change governance in cities in the Global South. Partnerships offer the opportunity to link the actions of diverse actors operating at different scales and, thus, they may be flexible enough to deal with uncertain futures and changing development demands. However, simultaneously, partnerships may lack effectiveness in delivering action at the local level, and may constitute a strategy for some actors to legitimate their objectives in spite of the interests of other partners. Engaging with the specific example of urban governance in Maputo, Mozambique, the authors present an analysis of potential partnerships in this context, in relation to the actors that are willing and able to intervene to deliver climate change action. What, they ask, are the challenges to achieving common objectives in partnerships from the perspective of local residents in informal settlements? The analysis describes a changing context of climate change governance in the city, in which the prospects of access to international finance for climate change adaptation are moving institutional actors towards engaging with participatory processes at the local level. However, the analysis suggests a question about the extent to which local communities are actually perceived as actors with legitimate interests who can intervene in partnerships, and whether their interests are recognised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim To evaluate whether observed geographical shifts in the distribution of the blue-winged macaw (Primolius maracana) are related to ongoing processes of global climate change. This species is vulnerable to extinction and has shown striking range retractions in recent decades, withdrawing broadly from southern portions of its historical distribution. Its range reduction has generally been attributed to the effects of habitat loss; however, as this species has also disappeared from large forested areas, consideration of other factors that may act in concert is merited.Location Historical distribution of the blue-winged macaw in Brazil, eastern Paraguay and northern Argentina.Methods We used a correlative approach to test a hypothesis of causation of observed shifts by reduction of habitable areas mediated by climate change. We developed models of the ecological niche requirements of the blue-winged macaw, based on point-occurrence data and climate scenarios for pre-1950 and post-1950 periods, and tested model predictivity for anticipating geographical distributions within time periods. Then we projected each model to the other time period and compared distributions predicted under both climate scenarios to assess shifts of habitable areas across decades and to evaluate an explanation for observed range retractions.Results Differences between predicted distributions of the blue-winged macaw over the twentieth century were, in general, minor and no change in suitability of landscapes was predicted across large areas of the species' original range in different time periods. No tendency towards range retraction in the south was predicted, rather conditions in the southern part of the species' range tended to show improvement for the species.Main conclusions Our test permitted elimination of climate change as a likely explanation for the observed shifts in the distribution of the blue-winged macaw, and points rather to other causal explanations (e.g. changing regional land use, emerging diseases).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Caribbean region remains highly vulnerable to the impacts of climate change. In order to assess the social and economic consequences of climate change for the region, the Economic Commission for Latin America and the Caribbean( ECLAC) has developed a model for this purpose. The model is referred to as the Climate Impact Assessment Model (ECLAC-CIAM) and is a tool that can simultaneously assess multiple sectoral climate impacts specific to the Caribbean as a whole and for individual countries. To achieve this goal, an Integrated Assessment Model (IAM) with a Computable General Equilibrium Core was developed comprising of three modules to be executed sequentially. The first of these modules defines the type and magnitude of economic shocks on the basis of a climate change scenario, the second module is a global Computable General Equilibrium model with a special regional and industrial classification and the third module processes the output of the CGE model to get more disaggregated results. The model has the potential to produce several economic estimates but the current default results include percentage change in real national income for individual Caribbean states which provides a simple measure of welfare impacts. With some modifications, the model can also be used to consider the effects of single sectoral shocks such as (Land, Labour, Capital and Tourism) on the percentage change in real national income. Ultimately, the model is envisioned as an evolving tool for assessing the impact of climate change in the Caribbean and as a guide to policy responses with respect to adaptation strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many challenges, including climate change, face the Nation’s water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. The key points below briefly summarize the chapters in this report and represent underlying assumptions needed to address the many impacts of climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, conditions of deposition and stratigraphical architecture of Neogene (Tortonian, 11-6,7Ma) sediments of southern central Crete were analysed. In order to improve resolution of paleoclimatic data, new methods were applied to quantify environmental parameters and to increase the chronostratigraphic resolution in shallow water sediments. A relationship between paleoenvironmental change observed on Crete and global processes was established and a depositional model was developed. Based on a detailed analysis of the distribution of non geniculate coralline red algae, index values for water temperature and water depth were established and tested with the distribution patterns of benthic foraminifera and symbiont-bearing corals. Calcite shelled bivalves were sampled from the Algarve coast (southern Portugal) and central Crete and then 87Sr/86Sr was measured. A high resolution chronostratigraphy was developed based on the correlation between fluctuations in Sr ratios in the measured sections and in a late Miocene global seawater Sr isotope reference curve. Applying this method, a time frame was established to compare paleoenvironmental data from southern central Crete with global information on climate change reflected in oxygen isotope data. The comparison between paleotemperature data based on red algae and global oxygen isotope data showed that the employed index values reflect global change in temperature. Data indicate a warm interval during earliest Tortonian, a second short warm interval between 10 and 9,5Ma, a longer climatic optimum between 9 and 8Ma and an interval of increasing temperatures in the latest Tortonian. The distribution of coral reefs and carpets shows that during the warm intervals, the depositional environment became tropical while temperate climates prevailed during the cold interval. Since relative tectonic movements after initial half-graben formation in the early Tortonian were low in southern central Crete, sedimentary successions strongly respond to global sea-level fluctuation. A characteristic sedimentary succession formed during a 3rd order sea-level cycle: It comprises mixed siliciclastic-limestone deposited during sea-level fall and lowstand, homogenous red algal deposits formed during sea-level rise and coral carpets formed during late rise and highstand. Individual beds in the succession reflect glacioeustatic fluctuations that are most prominent in the mixed siliciclastic-limestone interval. These results confirm the fact that sedimentary successions deposited at the critical threshold between temperate and tropical environments develop characteristic changes in depositional systems and biotic associations that can be used to assemble paleoclimatic datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Western Escarpment of the Andes at 18.30°S (Arica area, northern Chile) is a classical example for a transient state in landscape evolution. This part of the Andes is characterized by the presence of >10,000 km2 plains that formed between the Miocene and the present, and >1500 m deeply incised valleys. Although processes in these valleys scale the rates of landscape evolution, determinations of ages of incision, and more importantly, interpretations of possible controls on valley formation have been controversial. This paper uses morphometric data and observations, stratigraphic information, and estimates of sediment yields for the time interval between ca. 7.5 Ma and present to illustrate that the formation of these valleys was driven by two probably unrelated components. The first component is a phase of base-level lowering with magnitudes of∼300–500 m in the Coastal Cordillera. This period of base-level change in the Arica area, that started at ca. 7.5 Ma according to stratigraphic data, caused the trunk streams to dissect headward into the plains. The headward erosion interpretation is based on the presence of well-defined knickzones in stream profiles and the decrease in valley widths from the coast toward these knickzones. The second component is a change in paleoclimate. This interpretation is based on (1) the increase in the size of the largest alluvial boulders (from dm to m scale) with distal sources during the last 7.5 m.y., and (2) the calculated increase in minimum fluvial incision rates of ∼0.2 mm/yr between ca. 7.5 Ma and 3 Ma to ∼0.3 mm/yr subsequently. These trends suggest an increase in effective water discharge for systems sourced in the Western Cordillera (distal source). During the same time, however, valleys with headwaters in the coastal region (local source) lack any evidence of fluvial incision. This implies that the Coastal Cordillera became hyperarid sometime after 7.5 Ma. Furthermore, between 7.5 Ma and present, the sediment yields have been consistently higher in the catchments with distal sources (∼15 m/m.y.) than in the headwaters of rivers with local sources (<7 m/m.y.). The positive correlation between sediment yields and the altitude of the headwaters (distal versus local sources) seems to reflect the effect of orographic precipitation on surface erosion. It appears that base-level change in the coastal region, in combination with an increase in the orographic effect of precipitation, has controlled the topographic evolution of the northern Chilean Andes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Watershed services are the benefits people obtain from the flow of water through a watershed. While demand for such services is increasing in most parts of the world, supply is getting more insecure due to human impacts on ecosystems such as climate or land use change. Population and water management authorities therefore require information on the potential availability of watershed services in the future and the trade-offs involved. In this study, the Soil and Water Assessment Tool (SWAT) is used to model watershed service availability for future management and climate change scenarios in the East African Pangani Basin. In order to quantify actual “benefits”, SWAT2005 was slightly modified, calibrated and configured at the required spatial and temporal resolution so that simulated water resources and processes could be characterized based on their valuation by stakeholders and their accessibility. The calibrated model was then used to evaluate three management and three climate scenarios. The results show that by the year 2025, not primarily the physical availability of water, but access to water resources and efficiency of use represent the greatest challenges. Water to cover basic human needs is available at least 95% of time but must be made accessible to the population through investments in distribution infrastructure. Concerning the trade-off between agricultural use and hydropower production, there is virtually no potential for an increase in hydropower even if it is given priority. Agriculture will necessarily expand spatially as a result of population growth, and can even benefit from higher irrigation water availability per area unit, given improved irrigation efficiency and enforced regulation to ensure equitable distribution of available water. The decline in services from natural terrestrial ecosystems (e.g. charcoal, food), due to the expansion of agriculture, increases the vulnerability of residents who depend on such services mostly in times of drought. The expected impacts of climate change may contribute to an increase or decrease in watershed service availability, but are only marginal and much lower than management impacts up to the year 2025.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flood seasonality of catchments in Switzerland is likely to change under climate change because of anticipated alterations of precipitation as well as snow accumulation and melt. Information on this change is crucial for flood protection policies, for example, or regional flood frequency analysis. We analysed projected changes in mean annual and maximum floods of a 22-year period for 189 catchments in Switzerland and two scenario periods in the 21st century based on an ensemble of climate scenarios. The flood seasonality was analysed with directional statistics that allow assessing both changes in the mean date a flood occurs as well as changes in the strength of the seasonality. We found that the simulated change in flood seasonality is a function of the change in flow regime type. If snow accumulation and melt is important in a catchment during the control period, then the anticipated change in flood seasonality is most pronounced. Decreasing summer precipitation in the scenarios additionally affects the flood seasonality (mean date of flood occurrence) and leads to a decreasing strength of seasonality, that is a higher temporal variability in most cases. The magnitudes of mean annual floods and more clearly of maximum floods (in a 22-year period) are expected to increase in the future because of changes in flood-generating processes and scaled extreme precipitation. Southern alpine catchments show a different signal, though: the simulated mean annual floods decrease in the far future, that is at the end of the 21st century. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework1. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4–0.5 °C by AD 2300; on top of 0.8–1.0 °C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22–27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We synthesized published data on the erosion of the Alpine foreland basin and apatite fission-track ages from the Alps to infer the erosional sediment budget history for the past 5 m.y. The data reveal that erosion of the Alpine foreland basin is highest in front of the western Alps (between 2 and 0.6 km) and decreases eastward over a distance of 700 km to the Austrian foreland basin (similar to 200 m). For the western Alps, erosion rates are >0.6 km/m.y., while erosion rates for the eastern foreland basin and the adjacent eastern Alps are <0.1 km/m.y., except for a small-scale signal in the Tauern Window. The results yield a large ellipsoidal, orogen-crossing pattern of erosion, centered along the western Alps. We suggest that accelerated erosion of the western Alps and their foreland basin occurred in response to regional-scale surface uplift, related to lithospheric unloading of the Eurasian slab along the Eurasian-Adriatic plate boundary. While we cannot rule out recent views that global climate change led to substantial erosion of the European Alps since 5 Ma, we postulate that regional-scale tectonic processes have driven erosion during this time, modulated by an increased erosional flux in response to Quaternary glaciations.