173 resultados para <C23
Resumo:
The current study presents quantitative reconstructions of tree cover, annual precipitation and mean July temperature derived from the pollen record from Lake Billyakh (65°17'N, 126°47'E, 340 m above sea level) spanning the last ca. 50 kyr. The reconstruction of tree cover suggests presence of woody plants through the entire analyzed time interval, although trees played only a minor role in the vegetation around Lake Billyakh prior to 14 kyr BP (<5%). This result corroborates low percentages of tree pollen and low scores of the cold deciduous forest biome in the PG1755 record from Lake Billyakh. The reconstructed values of the mean temperature of the warmest month ~8-10 °C do not support larch forest or woodland around Lake Billyakh during the coldest phase of the last glacial between ~32 and ~15 kyr BP. However, modern cases from northern Siberia, ca. 750 km north of Lake Billyakh, demonstrate that individual larch plants can grow within shrub and grass tundra landscape in very low mean July temperatures of about 8 °C. This makes plausible our hypothesis that the western and southern foreland of the Verkhoyansk Mountains could provide enough moist and warm microhabitats and allow individual larch specimens to survive climatic extremes of the last glacial. Reconstructed mean values of precipitation are about 270 mm/yr during the last glacial interval. This value is almost 100 mm higher than modern averages reported for the extreme-continental north-eastern Siberia east of Lake Billyakh, where larch-dominated cold deciduous forest grows at present. This suggests that last glacial environments around Lake Billyakh were never too dry for larch to grow and that the summer warmth was the main factor, which limited tree growth during the last glacial interval. The n-alkane analysis of the Siberian plants presented in this study demonstrates rather complex alkane distribution patterns, which challenge the interpretation of the fossil records. In particular, extremely low n-alkane concentrations in the leaves of local coniferous trees and shrubs suggest that their contribution to the litter and therefore to the fossil lake sediments might be not high enough for tracing the Quaternary history of the needleleaved taxa using the n-alkane biomarker method.
Resumo:
We determined the distribution of lipids (n-alkanes and n-alkan-2-ones) in present-day peat-formingplants in the RoñanzasBog in northernSpain. Consistent with the observation of others, most Sphagnum (moss) species alkanes maximized at C23, whereas the other plants maximized at higher molecular weight (C27 to C31). We show for the first time that plants other than seagrass and Sphagnum moss contain n-alkan-2-ones. Almost all the species analysed showed an n-alkan-2-one distribution between C21 and C31 with an odd/even predominance, maximizing at C27 or C29, except ferns, which maximized at lower molecular weight (C21–C23). We also observed that microbial degradation can be a major contributor to the n-alkan-2-one distribution in sediments as opposed to a direct input of ketones from plants
Resumo:
An electrically floating bare tether in LEO orbit may serve as upper atmospheric probe. Ambient ions bombard the negatively biased tether and liberate secondary electrons, which accelerate through the same voltage to form a magnetically guided planar e-beam resulting in auroral effects at the E-layer. This beam is free from the S/C charging and plasma interaction problems of standard e-beams. The energy flux is weak but varies accross the large beam cross section, allowing continuous observation from the S/C. A brightness scan of line-integrated emissions, that mix emitting altitudes and tether points originating the electrons, is analysed. The tether is magnetically dragged at nighttime operation, when power supply and plasma contactor at the S/C are off for electrical floating; power and contactor are on at daytime for partial current reversal, resulting in thrust. System requirements for keeping average orbital height are discussed.
Resumo:
We determined the lipid distributions (n-alkanes, n-alkan-2-ones, n-alkanoic acids), total organic carbon (TOC), total nitrogen (TN), Ca/Mg and ash content in Las Conchas mire, a 3.2 m deep bryophyte-dominated mire in Northern Spain covering 8000 cal yr BP. Bog conditions developed in the bottom 20 cm of the profile, and good preservation of organic matter (OM) was inferred from n-alkanoic acid distribution, with the exception of the uppermost 20 cm (last ca. 200 yr). Microbial synthesis of long chain saturated fatty acids from primary OM likely produced a dominance of short chain n-alkanoic acids with a bimodal distribution, as well as the lack of correspondence between the n-alkane and n-alkanoic acid profiles in the upper 20 cm. This was accompanied by an increase in ash content, a decrease in TOC and variation in n-alkane ratios, thereby suggesting significant changes in the mire, namely drainage and transformation to a meadow, in the last ca. 200 yr. The distribution of n-alkan-2-ones indicated an increase in bacterial source from the bottom of the record to 94 cm, whereas their distribution in the upper part could be attributed mainly to plant input and/or the microbial oxidation of n-alkanes. The different n-alkane proxies showed variations, which we interpreted in terms of changes in vegetation (Sphagnum vs. non-Sphagnum dominated phases) during the last 8000 cal yr BP. C23 was the most abundant homolog throughout most of the record, thereby suggesting dominant humid conditions alternating with short drier phases. However, such humid conditions were not linked to paleoclimatic variation but rather to geomorphological characteristics: Las Conchas mire, at the base of the Cuera Range, receives continuous runoff—even during drier periods—which is not necessarily accompanied by additional mineral input to peat, producing the development of Sphagnum moss typical of waterlogged ecotopes and damp habitats. Thus, although geochemical proxies indicated an ombrotrophic regime in the mire, geomorphological characteristics may make a considerable contribution to environmental conditions.
Resumo:
Alkanes having unusual saturated isoprenoidal and methyl-branched structures have been isolated from the bitumen of several sediments. The methanogenic biomarkers 2,6,10,15,19-pentamethyleicosane and squalane were found in sediments which also contained bacteriogenic glycerol ethers. However, in one ether-containing sediment, 2,6,10,13,17,21-hexamethyldocosane was tentatively identified and this compound was found in place of the established alkane biomarkers. Other hydrocarbons found were regular C21 and C23 isoprenoid alkanes, compounds which cannot be derived from phytol; two isoprenoids of the type 3,7,11.-polymethylalkane, previously reported only in petroleums; 8-methylheptadecane, a probable biomarker for cyanobacteria and a number of its homologs and other methyl-branched alkanes. Ubiquitous branched-chain alkylbenzenes and a homology of trimethylalkylbenzenes were also isolated. Most, or all, of the compounds reported here are probably not catagenetic products but may represent direct algal or bacterial bioinputs.
Resumo:
During the Integrated Ocean Drilling Program (IODP) Expedition 307 for the first time a cold-water coral carbonate mound was drilled down through its base into the underlying sediments. In the current study, sample material from within and below Challenger Mound, located in the Belgica carbonate mound province in the Porcupine Basin offshore Ireland, was investigated for its distribution of microbial communities and gas composition using biogeochemical and geochemical approaches to elucidate the question on the initiation of carbonate mounds. Past and living microbial populations are lower in the mound section compared to the underlying sediments or sediments of an upslope reference site. A reason for this might be a reduced substrate feedstock, reflected by low total organic carbon (TOC) contents, in the once coral dominated mound sequence. In contrast, in the reference site a lithostratigraphic sequence with comparatively high TOC contents shows higher abundances of both past and present microbial communities, indicating favourable living conditions from time of sedimentation until today. Composition and isotopic values of gases below the mound base seem to point to a mixed gas of biogenic and thermogenic origin with a higher proportion of biogenic gas. Oil-derived hydrocarbons were not detected at the mound site. This suggests that at least in the investigated part of the mound base the upward flow of fossil hydrocarbons, being one hypothesis for the initiation of the formation of carbonate mounds, seems to be only of minor significance.
Resumo:
Dark, organic-rich sediments were recovered from the lower Miocene section (~16.6 Ma) in Hole 985A in the Norway Basin during Ocean Drilling Program Leg 162. Organic carbon and total sulfur contents of the dark sediments showed a maximum concentration of 5.6 and 26.1 wt%, respectively. Sulfur enrichment in the sediments indicates that these dark layers were formed under anoxic conditions in bottom water. Four dark and eight greenish gray sediment samples, ranging in age from early Miocene to Pleistocene, were analyzed for lipid-class compounds (aliphatic hydrocarbons, fatty alcohols, and sterols) using gas chromatography (GC) and GC/mass spectrometry to better understand the formation processes of the organic-rich dark layers and to reconstruct the paleoenvironmental changes. The molecular distributions of n-alkanes and fatty alcohols indicate that terrigenous organic matter largely contributed to both types of sediments. Significant amounts of hopanoid hydrocarbons, such as diploptene and hop-17(21)-ene, however, were detected characteristically in the dark sediments, which suggests that prokaryotes such as methane-oxidizing bacteria or cyanobacteria may have significantly contributed to the formation of these organic-rich, dark sediments. These results indicate that the bottom waters of the Norway Basin had been subjected to anoxic conditions during the early Miocene.