992 resultados para working activities


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transportation research makes a difference for Iowans and the nation. Implementation of cost-effective research projects contributes to a transportation network that is safer, more efficient, and longer lasting. Working in cooperation with our partners from universities, industry, other states, and FHWA, as well as participation in the Transportation Research Board (TRB), provides benefits for every facet of the DOT. This allows us to serve our communities and the traveling public more effectively. Pooled fund projects allow leveraging of funds for higher returns on investments. In 2011, Iowa led thirteen active pooled fund studies, participated in twenty-one others, and was wrapping-up, reconciling, and closing out an additional 6 Iowa Led pooled fund studies. In addition, non-pooled fund SPR projects included approximately 8 continued, 9 new, and over a dozen reoccurring initiatives such as the technical transfer/training program. Additional research is managed and conducted by the Office of Traffic and Safety and other departments in the Iowa DOT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of this study is to create a seamless chain of actions and more detailed structure to the front end of innovation to be able to increase the front end performance and finally to influence the renewal of companies. The main goal is achieved through by the new concept of an integrated model of early activities of FEI leading to a discovery of new elements of opportunities and the identification of new business and growth areas. The procedure offers one possible solution to a dynamic strategy formation process in innovation development cycle. In this study the front end of innovation is positioned between a strategy reviews and a concept creation with needed procedures, tools, and frameworks. The starting point of the study is that the origins of innovation are not well enough understood. The study focuses attention on the early activities of FEI. These first activities are conceptualized in order to find out successful innovation initiatives and strategic renewal agendas. A seamless chain of activities resulting in faster and more precise identification of opportunities and growth areas available on markets and inside companies is needed. Three case studies were conducted in order to study company views on available theory doctrine and to identify the first practical experiences and procedures in the beginning of the front end of innovation. Successful innovation requires focus on renewal in both internal and external directions and they should be carefully balanced for best results. Instead of inside-out mode of actions the studied companies have a strong outside-in thinking mode and they mainly co-develop their innovation initiatives in close proximity with customers i.e. successful companies are an integral part of customers business and success. Companies have tailor-made innovation processes combined their way of working linked to their business goals, and priorities of actual needs of transformation. The result of this study is a new modular FEI platform which can be configured by companies against their actual business needs and drivers. This platform includes new elements of FEI documenting an architecture presenting how the system components work together. The system is a conceptual approach from theories of emergent strategy formation, opportunity identification and creation, interpretation-analysis-experimentation triad and the present FEI theories. The platform includes new features compared to actual models of FEI. It allows managers to better understand the importance of FEI in the whole innovation development stage and FEI as a phase and procedure to discover and implement emergent strategy. An adaptable company rethinks and redirects strategy proactively from time to time. Different parts of the business model are changed to remove identified obstacles for growth and renewal which gives them avenues to find right reforms for renewal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two groups of rainbow trout were acclimated to 20 , 100 , and 18 o C. Plasma sodium, potassium, and chloride levels were determined for both. One group was employed in the estimation of branchial and renal (Na+-K+)-stimulated, (HC0 3-)-stimulated, and CMg++)-dependent ATPase activities, while the other was used in the measurement of carbonic anhydrase activity in the blood, gill and kidney. Assays were conducted using two incubation temperature schemes. One provided for incubation of all preparations at a common temperature of 2S oC, a value equivalent to the upper incipient lethal level for this species. In the other procedure the preparations were incubated at the appropriate acclimation temperature of the sampled fish. Trout were able to maintain plasma sodium and chloride levels essentially constant over the temperature range employed. The different incubation temperature protocols produced different levels of activity, and, in some cases, contrary trends with respect to acclimation temperature. This information was discussed in relation to previous work on gill and kidney. The standing-gradient flow hypothesis was discussed with reference to the structure of the chloride cell, known thermallyinduced changes in ion uptake, and the enzyme activities obtained in this study. Modifications of the model of gill lon uptake suggested by Maetz (1971) were proposed; high and low temperature models resulting. In short, ion transport at the gill at low temperatures appears to involve sodium and chloride 2 uptake by heteroionic exchange mechanisms working in association w.lth ca.rbonlc anhydrase. G.l ll ( Na + -K + ) -ATPase and erythrocyte carbonic anhydrase seem to provide the supplemental uptake required at higher temperatures. It appears that the kidney is prominent in ion transport at low temperatures while the gill is more important at high temperatures. 3 Linear regression analyses involving weight, plasma ion levels, and enzyme activities indicated several trends, the most significant being the interrelationship observed between plasma sodium and chloride. This, and other data obtained in the study was considered in light of the theory that a link exists between plasma sodium and chloride regulatory mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One-pot acetalizations of cyclohexanone. acetophenone and benzophenone were carried out using methanol over H-montmorillonite clay (a mesoporous material). silica, alumina, and different zeolites such as HFAU-Y.HBeta, H-ZSM-5, and H-mordenite. In all the cases a single product-the corresponding dimethylacetal-was obtained in high yields. Hemiacetal formation was not observed with any catalyst. A comparison of catalytic activity indicated that montmorillonite K-10 is the most active catalyst for the reaction. As evidenced by the reaction time studies, the catalyst decay is greater over the zeolite catalyst than over the clay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquest quadern és el quart lliurement de la Guia per a l'adaptació a l'espai europeo superior. Té l'origen en el debat de la Comissió de Seguiment del Pla Pilot d'adaptació a l'Espai Europeu d'Educació Superior de la UdG i del grup de treball que s'ha constituït l'estiu del 2006 expressament per tractar el tema de les activitats d'aprenentatge

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slides, notes and links summarising presentation, discussions, activities and further reading

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a background document for Bruegel Policy Contribution 2012/11 ‘Compositional effects on productivity, labour cost and export adjustment’, this working paper presents detailed results for 24 EU countries on: • The sectoral changes in the economy; • The unit labour costs (ULC) based real effective exchange rate (REER) and its main components; • Export performance. • The ULC-REERs are calculated: • For the total economy, the business sector (excluding agriculture, construction and real estate activities), and some main sectors; • Using both actual aggregates and fixed-weight aggregates, as the latter are free from the impacts of compositional changes; • Against 30 trading partners and against three subsets of trading partners: euro-area, non-euro area EU, non-EU.