859 resultados para wind energy


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper considers the dynamic modelling and motion control of a Surface Effect Ship (SES) for safer transfer of personnel and equipment from vessel to-and-from an offshore wind-turbine. Such a vessel is a key enabling factor for operation and maintenance (O&M) of offshore wind-energy infrastructure. The control system designed is referred to as Boarding Control System (BCS). We investigate the performance of this system for a specific wind-farm service vessel–The Wave Craft. A two-modality vessel model is presented to account for the vessel free motion and motion whilst in contact with a wind-turbine. On a SES, the pressurized air cushion carries the majority of the vessel mass. The control problem considered relates to the actuation of the pressure such that wave-induced vessel motions are minimized. This leads to a safer personnel transfer in developed sea-states than what is possible today. Results for the BCS is presented through simulation and model-scale craft testing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, a wind energy conversion system (WECS) using grid-connected wound rotor induction machine controlled from the rotor side is compared with both fixed speed and variable speed systems using cage rotor induction machine. The comparison is done on the basis of (I) major hardware components required, (II) operating region, and (III) energy output due to a defined wind function using the characteristics of a practical wind turbine. Although a fixed speed system is more simple and reliable, it severely limits the energy output of a wind turbine. In case of variable speed systems, comparison shows that using a wound rotor induction machine of similar rating can significantly enhance energy capture. This comes about due to the ability to operate with rated torque even at supersynchronous speeds; power is then generated out of the rotor as well as the stator. Moreover, with rotor side control, the voltage rating of the power devices and dc bus capacitor bank is reduced. The size of the line side inductor also decreasesd. Results are presented to show the substantial advantages of the doubly fed system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation, and uses little land. In operation, the overall cost per unit of energy produced is similar to the cost for new coal and natural gas installations. However, the stochastic behaviour of wind speeds leads to significant disharmony between wind energy production and electricity demand. Wind generation suffers from an intermittent characteristics due to the own diurnal and seasonal patterns of the wind behaviour. Both reactive power and voltage control are important under varying operating conditions of wind farm. To optimize reactive power flow and to keep voltages in limit, an optimization method is proposed in this paper. The objective proposed is minimization of the voltage deviations of the load buses (Vdesired). The approach considers the reactive power limits of wind generators and co-ordinates the transformer taps. This algorithm has been tested under practically varying conditions simulated on a test system. The results are obtained on a system of 50-bus real life equivalent power network. The result shows the efficiency of the proposed method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High wind poses a number of hazards in different areas such as structural safety, aviation, and wind energy-where low wind speed is also a concern, pollutant transport, to name a few. Therefore, usage of a good prediction tool for wind speed is necessary in these areas. Like many other natural processes, behavior of wind is also associated with considerable uncertainties stemming from different sources. Therefore, to develop a reliable prediction tool for wind speed, these uncertainties should be taken into account. In this work, we propose a probabilistic framework for prediction of wind speed from measured spatio-temporal data. The framework is based on decompositions of spatio-temporal covariance and simulation using these decompositions. A novel simulation method based on a tensor decomposition is used here in this context. The proposed framework is composed of a set of four modules, and the modules have flexibility to accommodate further modifications. This framework is applied on measured data on wind speed in Ireland. Both short-and long-term predictions are addressed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Numerous studies have shown that flexible materials improve resilience and durability of a structure. Several studies have investigated the behavior of elastic plates under the influence of a free stream, such as studies of the fluttering flag and others of shape reconfiguration, due to a free stream.

The principle engineering contribution of this thesis is the design and development of a vertical axis wind turbine that features pliable blades which undergo various modes of behavior, ultimately leading to rotational propulsion of the turbine. The wind turbine design was tested in a wind tunnel and at the Caltech Laboratory for Optimized Wind Energy. Ultimately, the flexible blade vertical axis wind turbine proved to be an effective way of harnessing the power of the wind.

In addition, this body of work builds on the current knowledge of elastic cantilever plates in a free stream flow by investigating the inverted flag. While previous studies have focused on the fluid structure interaction of a free stream on elastic cantilever plates, none had studied the plate configuration where the trailing edge was clamped, leaving the leading edge free to move. Furthermore, the studies presented in this thesis establish the geometric boundaries of where the large-amplitude flapping occurs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors ( 1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high-performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteorological environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wind energy is predominantly a nonsynchronous generation source. Large-scale integration of wind generation with existing electricity systems, therefore, presents challenges in maintaining system frequency stability and local voltage stability. Transmission system operators have implemented system operational constraints (SOCs) in order to maintain stability with high wind generation, but imposition of these constraints results in higher operating costs. A mixed integer programming tool was used to simulate generator dispatch in order to assess the impact of various SOCs on generation costs. Interleaved day-ahead scheduling and real-time dispatch models were developed to allow accurate representation of forced outages and wind forecast errors, and were applied to the proposed Irish power system of 2020 with a wind penetration of 32%. Savings of at least 7.8% in generation costs and reductions in wind curtailment of 50% were identified when the most influential SOCs were relaxed. The results also illustrate the need to relax local SOCs together with the system-wide nonsynchronous penetration limit SOC, as savings from increasing the nonsynchronous limit beyond 70% were restricted without relaxation of local SOCs. The methodology and results allow for quantification of the costs of SOCs, allowing the optimal upgrade path for generation and transmission infrastructure to be determined.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the last fifty years, Nunavut has developed a deep dependence on diesel for virtually all of its energy needs, including electricity. This dependence has created a number of economic, environmental and health related challenges in the territory, with an estimated 20% of the territory’s annual budget being spent on energy, thereby limiting the Government of Nunavut’s ability to address other essential infrastructure and societal needs, such as education, nutrition and health care and housing. One solution to address this diesel dependency is the use of renewable energy technologies (RETs), such as wind, solar and hydropower. As such, this thesis explores energy alternatives in Nunavut, and through RETScreen renewable energy simulations, found that solar power and wind power are technically viable options for Nunavut communities and a potentially successful means to offset diesel-generated electricity in Nunavut. However, through this analysis it was also discovered that accurate data or renewable resources are often unavailable for most Nunavut communities. Moreover, through qualitative open-ended interviews, the perspectives of Nunavut residents with regards to developing RETs in Nunavut were explored, and it was found that respondents generally supported the use of renewable energy in their communities, while acknowledging that there still remains a knowledge gap among residents regarding renewable energy, stemming from a lack of communication between the communities, government and the utility company. In addition, the perceived challenges, opportunities and gaps that exist with regards to renewable energy policy and program development were discussed with government policy-makers through further interviews, and it was discovered that often government departments work largely independently of each other rather than collaboratively, creating gaps and oversights in renewable energy policy in Nunavut. Combined, the results of this thesis were used to develop a number of recommended policy actions that could be undertaken by the territorial and federal government to support a shift towards renewable energy in order to develop a sustainable and self-sufficient energy plan in Nunavut. They include: gathering accurate renewable resource data in Nunavut; increasing community consultations on the subject of renewable energy; building strong partnerships with universities, colleges and industry; developing a knowledge sharing network; and finally increasing accessibility to renewable energy programs and policies in Nunavut.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A key obstacle to the wide-scale development of renewable energy is that public acceptability of wind energy cannot be taken for granted when wind energy moves from abstract support to local implementation. Drawing on a case study of opposition to the siting of a proposed off-shore wind farm in Northern Ireland, we offer a rhetorical analysis of a series of representative documents drawn from government, media, pro- and anti-wind energy sources, which identifies and interprets a number of discourses of objection and support. The analysis indicates that the key issue in terms of the transition to a renewable energy economy has little to do with the technology itself. Understanding the different nuances of pro- and anti-wind energy discourses highlights the importance of thinking about new ways of looking at these conflicts. These include adopting a “conflict resolution” approach and “upstreaming” public involvement in the decision-making process and also the counter-productive strategy of assuming that objection is based on ignorance (which can be solved by information) or NIMBY thinking (which can be solved by moral arguments about overcoming “free riders”).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper investigates the control and operation of doubly-fed induction generator (DFIG) and fixed-speed induction generator (FSIG) based wind farms under unbalanced grid conditions. A DFIG system model suitable for analyzing unbalanced operation is developed, and used to assess the impact of an unbalanced supply on DFIG and FSIG operation. Unbalanced voltage at DFIG and FSIG terminals can cause unequal heating on the stator windings, extra mechanical stresses and output power fluctuations. These problems are particularly serious for the FSIG-based wind farm without a power electronic interface to the grid. To improve the stability of a wind energy system containing both DFIG and FSIG based wind farms during network unbalance, a control strategy of unbalanced voltage compensation by the DFIG systems is proposed. The DFIG system compensation ability and the impact of transmission network impedance are illustrated. The simulation results implemented in Matlab/Simulink show that the proposed DFIG control system improves not only its own performance, but also the stability of the FSIG system with the same grid connection point during network unbalance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The increasing penetration of wind generation on the Island of Ireland has been accompanied by close investigation of low-frequency pulsations contained within active power flow. A primary concern is excitation of low-frequency oscillation modes already present on the system, particularly the 0.75 Hz mode as a consequence of interconnection between the Northern and Southern power system networks. In order to determine whether the prevalence of wind generation has a negative effect (excites modes) or positive impact (damping of modes) on the power system, oscillations must be measured and characterised. Using time – frequency methods, this paper presents work that has been conducted to extract features from low-frequency active power pulsations to determine the composition of oscillatory modes which may impact on dynamic stability. The paper proposes a combined wavelet-Prony method to extract modal components and determine damping factors. The method is exemplified using real data obtained from wind farm measurements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The public is typically in agreement with the renewable energy targets established in many national states and generally supports the idea of increased reliance on wind energy. Nevertheless, many specific wind power projects face significant local opposition. A key question for the wind energy sector is, therefore, how to better engage local people to foster support for specific projects. IEA Wind Task 28 on Social Acceptance of Wind Energy Projects aims to facilitate wind energy development by reviewing current practices, emerging ideas, and exchanging successful practices among the participating countries. It also aims to disseminate the insights of leading research to a nontechnical audience, including project developers, local planning officials, and the general public. The interdisciplinary approach adopted by Task 28 enables an in-depth understanding of the nature of opposition to wind projects and a critical assessment of emerging strategies for social acceptance. Task 28 has analyzed a range of key issues related to social acceptance of wind energy, including the impacts on landscapes and ecosystems, on standard of living and well-being, the implementation of energy policy and spatial planning, the distribution of costs and benefits, and procedural justice. It is clear that although wind energy has many benefits; however, specific projects do impact local communities. As such the concerns of the affected people have to be taken seriously. Moreover, as opposition is rarely without foundation, it is in the interests of developers and advocates to engage local people and to improve projects for the benefit of all.