910 resultados para weighted linear regression


Relevância:

90.00% 90.00%

Publicador:

Resumo:

El presente trabajo desarrollado en el Hospital Méderi es una asesoría sobre modelos de pronósticos la cual consiste en analizar una base de datos de mercancía almacenada en la bodega general, suministrada por la entidad, mediante cuatro tipos de pronósticos diferentes, Promedio Móvil Ponderado, Promedio Móvil simple, Regresión Lineal y Suavizamiento Exponencial. Teniendo en cuenta el resultado arrojado por cada uno de los pronósticos, se hace una recomendación al hospital diciendo cual pronóstico debería utilizar para predecir la demanda con mayor precisión.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current energy requirements system used in the United Kingdom for lactating dairy cows utilizes key parameters such as metabolizable energy intake (MEI) at maintenance (MEm), the efficiency of utilization of MEI for 1) maintenance, 2) milk production (k(l)), 3) growth (k(g)), and the efficiency of utilization of body stores for milk production (k(t)). Traditionally, these have been determined using linear regression methods to analyze energy balance data from calorimetry experiments. Many studies have highlighted a number of concerns over current energy feeding systems particularly in relation to these key parameters, and the linear models used for analyzing. Therefore, a database containing 652 dairy cow observations was assembled from calorimetry studies in the United Kingdom. Five functions for analyzing energy balance data were considered: straight line, two diminishing returns functions, (the Mitscherlich and the rectangular hyperbola), and two sigmoidal functions (the logistic and the Gompertz). Meta-analysis of the data was conducted to estimate k(g) and k(t). Values of 0.83 to 0.86 and 0.66 to 0.69 were obtained for k(g) and k(t) using all the functions (with standard errors of 0.028 and 0.027), respectively, which were considerably different from previous reports of 0.60 to 0.75 for k(g) and 0.82 to 0.84 for k(t). Using the estimated values of k(g) and k(t), the data were corrected to allow for body tissue changes. Based on the definition of k(l) as the derivative of the ratio of milk energy derived from MEI to MEI directed towards milk production, MEm and k(l) were determined. Meta-analysis of the pooled data showed that the average k(l) ranged from 0.50 to 0.58 and MEm ranged between 0.34 and 0.64 MJ/kg of BW0.75 per day. Although the constrained Mitscherlich fitted the data as good as the straight line, more observations at high energy intakes (above 2.4 MJ/kg of BW0.75 per day) are required to determine conclusively whether milk energy is related to MEI linearly or not.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Forecasting wind power is an important part of a successful integration of wind power into the power grid. Forecasts with lead times longer than 6 h are generally made by using statistical methods to post-process forecasts from numerical weather prediction systems. Two major problems that complicate this approach are the non-linear relationship between wind speed and power production and the limited range of power production between zero and nominal power of the turbine. In practice, these problems are often tackled by using non-linear non-parametric regression models. However, such an approach ignores valuable and readily available information: the power curve of the turbine's manufacturer. Much of the non-linearity can be directly accounted for by transforming the observed power production into wind speed via the inverse power curve so that simpler linear regression models can be used. Furthermore, the fact that the transformed power production has a limited range can be taken care of by employing censored regression models. In this study, we evaluate quantile forecasts from a range of methods: (i) using parametric and non-parametric models, (ii) with and without the proposed inverse power curve transformation and (iii) with and without censoring. The results show that with our inverse (power-to-wind) transformation, simpler linear regression models with censoring perform equally or better than non-linear models with or without the frequently used wind-to-power transformation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We use sunspot group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups RB above a variable cut-off threshold of observed total whole-spot area (uncorrected for foreshortening) to simulate what a lower acuity observer would have seen. The synthesised annual means of RB are then re-scaled to the full observed RGO group number RA using a variety of regression techniques. It is found that a very high correlation between RA and RB (rAB > 0.98) does not prevent large errors in the intercalibration (for example sunspot maximum values can be over 30 % too large even for such levels of rAB). In generating the backbone sunspot number (RBB), Svalgaard and Schatten (2015, this issue) force regression fits to pass through the scatter plot origin which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile (“Q  Q”) plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot group numbers). However, other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In interval-censored survival data, the event of interest is not observed exactly but is only known to occur within some time interval. Such data appear very frequently. In this paper, we are concerned only with parametric forms, and so a location-scale regression model based on the exponentiated Weibull distribution is proposed for modeling interval-censored data. We show that the proposed log-exponentiated Weibull regression model for interval-censored data represents a parametric family of models that include other regression models that are broadly used in lifetime data analysis. Assuming the use of interval-censored data, we employ a frequentist analysis, a jackknife estimator, a parametric bootstrap and a Bayesian analysis for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Furthermore, for different parameter settings, sample sizes and censoring percentages, various simulations are performed; in addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to a modified deviance residual in log-exponentiated Weibull regression models for interval-censored data. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article, we compare three residuals based on the deviance component in generalised log-gamma regression models with censored observations. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and the empirical distribution of each residual is displayed and compared with the standard normal distribution. For all cases studied, the empirical distributions of the proposed residuals are in general symmetric around zero, but only a martingale-type residual presented negligible kurtosis for the majority of the cases studied. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for the martingale-type residual in generalised log-gamma regression models with censored data. A lifetime data set is analysed under log-gamma regression models and a model checking based on the martingale-type residual is performed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the issue of assessing influence of observations in the class of Birnbaum-Saunders nonlinear regression models, which is useful in lifetime data analysis. Our results generalize those in Galea et al. [8] which are confined to Birnbaum-Saunders linear regression models. Some influence methods, such as the local influence, total local influence of an individual and generalized leverage are discussed. Additionally, the normal curvatures for studying local influence are derived under some perturbation schemes. We also give an application to a real fatigue data set.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Com o objetivo de avaliar o uso do consumo de energia elétrica como indicador socioeconômico, esta pesquisa analisa informações em dois níveis de agregação geográfica. No primeiro, sob perspectiva territorial, investiga indicadores de Renda e Consumo de Energia Elétrica agregados por áreas de ponderação (conjunto de setores censitários) do município de São Paulo e utiliza os microdados do Censo Demográfico 2000 em conjunto com a base de domicílios da AES Eletropaulo. Aplica modelos de Spatial Auto-Regression (SAR), Geographically Weighted Regression (GWR), e um modelo inédito combinado (GWR+SAR), desenvolvido neste estudo. Diversas matrizes de vizinhança foram utilizadas na avaliação da influência espacial (com padrão Centro-Periferia) das variáveis em estudo. As variáveis mostraram forte auto-correlação espacial (I de Moran superior a 58% para o Consumo de Energia Elétrica e superior a 75% para a Renda Domiciliar). As relações entre Renda e Consumo de Energia Elétrica mostraram-se muito fortes (os coeficientes de explicação da Renda atingiram valores de 0,93 a 0,98). No segundo nível, domiciliar, utiliza dados coletados na Pesquisa Anual de Satisfação do Cliente Residencial, coordenada pela Associação Brasileira dos Distribuidores de Energia Elétrica (ABRADEE), para os anos de 2004, 2006, 2007, 2008 e 2009. Foram aplicados os modelos Weighted Linear Model (WLM), GWR e SAR para os dados das pesquisas com as entrevistas alocadas no centróide e na sede dos distritos. Para o ano de 2009, foram obtidas as localizações reais dos domicílios entrevistados. Adicionalmente, foram desenvolvidos 6 algoritmos de distribuição de pontos no interior dos polígonos dos distritos. Os resultados dos modelos baseados em centróides e sedes obtiveram um coeficiente de determinação R2 em torno de 0,45 para a técnica GWR, enquanto os modelos baseados no espalhamento de pontos no interior dos polígonos dos distritos reduziram essa explicação para cerca de 0,40. Esses resultados sugerem que os algoritmos de alocação de pontos em polígonos permitem a observação de uma associação mais realística entre os construtos analisados. O uso combinado dos achados demonstra que as informações de faturamento das distribuidoras de energia elétrica têm grande potencial para apoiar decisões estratégicas. Por serem atuais, disponíveis e de atualização mensal, os indicadores socioeconômicos baseados em consumo de energia elétrica podem ser de grande utilidade como subsídio a processos de classificação, concentração e previsão da renda domiciliar.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este trabalho teve por objetivo estimar equações de regressão linear múltipla tendo, como variáveis explicativas, as demais características avaliadas em experimento de milho e, como variáveis principais, a diferença mínima significativa em percentagem da média (DMS%) e quadrado médio do erro (QMe), para peso de grãos. Com 610 experimentos conduzidos na Rede de Ensaios Nacionais de Competição de Cultivares de Milho, realizados entre 1986 e 1996 (522 experimentos) e em 1997 (88 experimentos), estimaram-se duas equações de regressão, com os 522 experimentos, validando estas pela análise de regressão simples entre os valores reais e os estimados pelas equações, com os 88 restantes, observando que, para a DMS% a equação não estimava o mesmo valor que a fórmula original e, para o QMe, a equação poderia ser utilizada na estimação. Com o teste de Lilliefors, verificou-se que os valores do QMe aderiam à distribuição normal padrão e foi construída uma tabela de classificação dos valores do QMe, baseada nos valores observados na análise da variância dos experimentos e nos estimados pela equação de regressão.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study aims to answer the following question: what are the different profiles of infant mortality, according to demographic, socioeconomic, infrastructure and health care, for the micro-regions at the Northeast of Brazil? Thus, the main objective is to analyze the profiles or typologies associated mortality levels sociodemographic conditions of the micro-regions, in the year 2010. To this end, the databases of birth and death certificates of SIM and SINASC (DATASUS/MS), were taken from the 2010 population Census microdata and from SIDRA/IBGE. As a methodology, a weighted multiple linear regression model was used in the analysis in order to find the most significant variables in the explanation child mortality for the year 2010. Also a cluster analysis was performed, seeking evidence, initially, of homogeneous groups of micro-regions, from of the significant variables. The logit of the infant mortality rate was used as dependent variable, while variables such as demographic, socioeconomic, infrastructure and health care in the micro-regions were taken as the independent variables of the model. The Bayesian estimation technique was applied to the database of births and deaths, due to the inconvenient fact of underreporting and random fluctuations of small quantities in small areas. The techniques of Spatial Statistics were used to determine the spatial behavior of the distribution of rates from thematic maps. In conclusion, we used the method GoM (Grade of Membership), to find typologies of mortality, associated with the selected variables by micro-regions, in order to respond the main question of the study. The results points out to the formation of three profiles: Profile 1, high infant mortality and unfavorable social conditions; Profile 2, low infant mortality, with a median social conditions of life; and Profile 3, median and high infant mortality social conditions. With this classification, it was found that, out of 188 micro-regions, 20 (10%) fits the extreme profile 1, 59 (31.4%) was characterized in the extreme profile 2, 34 (18.1%) was characterized in the extreme profile 3 and only 9 (4.8%) was classified as amorphous profile. The other micro-regions framed up in the profiles mixed. Such profiles suggest the need for different interventions in terms of public policies aimed to reducing child mortality in the region

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work aims to study the problem of the formal job in the Brazilian Northeast region and its effect in the social inclusion, taking for base the analysis of variables defined in the Atlas of Social Exclusion, which is based on the 2000 Brazilian Census, choosing the county as unit of analysis. As methodological options, an exploratory data analysis was performed, followed by multivariate statistical techniques, such as weighted multiple regression analysis, cluster analysis and exploratory analysis of spatial data. The results pointed out to low rates of formal job for the active age population as well as low indexes of social inclusion in the Northeast region of Brazil. A strong association of the formal job with the indicators of social inclusion under investigation, was evidenced (schooling, inequality, poverty, youth and income form government transfers), as well as a strong association of the formal job with the new index of social inclusion (IIS), modified from the IES. At the Federative Units, in which better levels of formal job had been found, good indexes of social inclusion are also observed. Highlights for the state of the Rio Grande do Norte, with the best conditions of life, and for the states of the Maranhão and Piauí, with the worst conditions. The situation of the Northeast region, facing the indicators under study, is very precarious, claiming for the necessity of emphasizing programs and governmental actions, specially directed to the raise of formal job levels of the region, reflecting, thus, in improvements on the income inequality, as well as in the social inclusion of the population of Northeastern natives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Em geral, a função de um modelo de impedância para processos de eletrodo simples é deduzida de um modelo elétrico equivalente, denominado circuito de Randles. Neste trabalho estudou-se a generalização dessa função, mediante a introdução de um parâmetro não-elétrico, relacionado com a flexibilidade do ângulo de fase e da magnitude. A função foi ajustada às medidas experimentais de impedância obtidas de um sistema constituído de uma liga Ti-10%Al (m/m) em solução de cloreto de sódio 0,9%, variando-se a amplitude de perturbação. Verificou-se que a função generalizada foi adequada para descrever a impedância do sistema analisado, reduzindo as distorções entre a curva experimental e a curva teórica. Além disso, os melhores resultados foram obtidos para sinais de perturbação do sistema com amplitude igual a 10 mV.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O fitotensiômetro de Alvim é amplamente utilizado para demonstrar a variação da turgescência do tronco, que é reduzida durante o dia, como efeito líquido da transpiração que ocorre na copa, e aumentada durante o período noturno, devido à recuperação que pode ser total ou parcial, dependendo da umidade disponível no solo, e da capacidade da planta em absorvê-la. Os valores indicados no manômetro são relativos, e muitas vezes não coincidem com os previstos pelas taxas de transpiração mensuradas ao longo do dia. Este trabalho considera a necessidade de uma nova interpretação das curvas observadas, através do seu seccionamento em diferentes cinéticas, sendo aplicadas equações de regressão linear a estas diferentes partes, e analisado o coeficiente angular destas regressões como parâmetro comparativo da intensidade das mudanças na turgescência do tronco entre diferentes plantas, sob diferentes condições ambientais.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Globalization of dairy cattle breeding has created a need for international sire proofs. Some early methods for converting proofs from one population to another are based on simple linear regression. An alternative robust regression method based on the t-distribution is presented, and maximum likelihood and Bayesian techniques for analysis are described, including the situation in which some proofs are missing. Procedures were used to investigate the relationship between Holstein sire proofs obtained by two Uruguayan genetic evaluation programs. The results suggest that conversion equations developed from data including only sires having proofs in both populations can lead to distorted results, relative to estimates obtained using techniques for incomplete data. There was evidence of non-normality of regression residuals, which constitutes an additional source of bias. A robust estimator may not solve all problems, but can provide simple conversion equations that are less sensitive to outlying proofs and to departures from assumptions.