954 resultados para weighted PageRank
Resumo:
In this note, we consider the scheduling problem of minimizing the sum of the weighted completion times on a single machine with one non-availability interval on the machine under the non-resumable scenario. Together with a recent 2-approximation algorithm designed by Kacem [I. Kacem, Approximation algorithm for the weighted flow-time minimization on a single machine with a fixed non-availability interval, Computers & Industrial Engineering 54 (2008) 401–410], this paper is the first successful attempt to develop a constant ratio approximation algorithm for this problem. We present two approaches to designing such an algorithm. Our best algorithm guarantees a worst-case performance ratio of 2+ε. © 2008 Elsevier B.V. All rights reserved.
Resumo:
A weighted variant of Hall's condition for the existence of matchings is shown to be equivalent to the existence of a matching in a lexicographic product. This is used to introduce characterizations of those bipartite graphs whose edges may be replicated so as to yield semiregular multigraphs or, equivalently, semiregular edge-weightings. Such bipartite graphs will be called semiregularizable. Some infinite families of semiregularizable trees are described and all semiregularizable trees on at most 11 vertices are listed. Matrix analogues of some of the results are mentioned and are shown to imply some of the known characterizations of regularizable graphs.
Resumo:
It is shown, for a bounded weighted bilateral shift T acting on l(p)(Z), and for 1
Resumo:
A ranking method assigns to every weighted directed graph a (weak) ordering of the nodes. In this paper we axiomatize the ranking method that ranks the nodes according to their outflow using four independent axioms. Besides the well-known axioms of anonymity and positive responsiveness we introduce outflow monotonicity – meaning that in pairwise comparison between two nodes, a node is not doing worse in case its own outflow does not decrease and the other node’s outflow does not increase – and order preservation – meaning that adding two weighted digraphs such that the pairwise ranking between two nodes is the same in both weighted digraphs, then this is also their pairwise ranking in the ‘sum’ weighted digraph. The outflow ranking method generalizes the ranking by outdegree for directed graphs, and therefore also generalizes the ranking by Copeland score for tournaments.
Resumo:
We introduce three compact graph states that can be used to perform a measurement-based Toffoli gate. Given a weighted graph of six, seven, or eight qubits, we show that success probabilities of 1/4, 1/2, and 1, respectively, can be achieved. Our study puts a measurement-based version of this important quantum logic gate within the reach of current experiments. As the graphs are setup independent, they could be realized in a variety of systems, including linear optics and ion traps.
Resumo:
Nitrogen Dioxide (NO2) is known to act as an environmental trigger for many respiratory illnesses. As a pollutant it is difficult to map accurately, as concentrations can vary greatly over small distances. In this study three geostatistical techniques were compared, producing maps of NO2 concentrations in the United Kingdom (UK). The primary data source for each technique was NO2 point data, generated from background automatic monitoring and background diffusion tubes, which are analysed by different laboratories on behalf of local councils and authorities in the UK. The techniques used were simple kriging (SK), ordinary kriging (OK) and simple kriging with a locally varying mean (SKlm). SK and OK make use of the primary variable only. SKlm differs in that it utilises additional data to inform prediction, and hence potentially reduces uncertainty. The secondary data source was Oxides of Nitrogen (NOx) derived from dispersion modelling outputs, at 1km x 1km resolution for the UK. These data were used to define the locally varying mean in SKlm, using two regression approaches: (i) global regression (GR) and (ii) geographically weighted regression (GWR). Based upon summary statistics and cross-validation prediction errors, SKlm using GWR derived local means produced the most accurate predictions. Therefore, using GWR to inform SKlm was beneficial in this study.
Resumo:
There is considerable interest in creating embedded, speech recognition hardware using the weighted finite state transducer (WFST) technique but there are performance and memory usage challenges. Two system optimization techniques are presented to address this; one approach improves token propagation by removing the WFST epsilon input arcs; another one-pass, adaptive pruning algorithm gives a dramatic reduction in active nodes to be computed. Results for memory and bandwidth are given for a 5,000 word vocabulary giving a better practical performance than conventional WFST; this is then exploited in an adaptive pruning algorithm that reduces the active nodes from 30,000 down to 4,000 with only a 2 percent sacrifice in speech recognition accuracy; these optimizations lead to a more simplified design with deterministic performance.
Resumo:
Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real-world graphs are labelled with both discrete and numeric attributes. In this paper, we present AGWAN (Attribute Graphs: Weighted and Numeric), a generative model for random graphs with discrete labels and weighted edges. The model is easily generalised to edges labelled with an arbitrary number of numeric attributes. We include algorithms for fitting the parameters of the AGWAN model to real-world graphs and for generating random graphs from the model. Using the Enron “who communicates with whom” social graph, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to the structure of real-world graphs.
Resumo:
Sparse representation based visual tracking approaches have attracted increasing interests in the community in recent years. The main idea is to linearly represent each target candidate using a set of target and trivial templates while imposing a sparsity constraint onto the representation coefficients. After we obtain the coefficients using L1-norm minimization methods, the candidate with the lowest error, when it is reconstructed using only the target templates and the associated coefficients, is considered as the tracking result. In spite of promising system performance widely reported, it is unclear if the performance of these trackers can be maximised. In addition, computational complexity caused by the dimensionality of the feature space limits these algorithms in real-time applications. In this paper, we propose a real-time visual tracking method based on structurally random projection and weighted least squares techniques. In particular, to enhance the discriminative capability of the tracker, we introduce background templates to the linear representation framework. To handle appearance variations over time, we relax the sparsity constraint using a weighed least squares (WLS) method to obtain the representation coefficients. To further reduce the computational complexity, structurally random projection is used to reduce the dimensionality of the feature space while preserving the pairwise distances between the data points in the feature space. Experimental results show that the proposed approach outperforms several state-of-the-art tracking methods.
Resumo:
Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real-world graphs are labelled with both discrete and numeric attributes. In this paper, we presentAgwan (Attribute Graphs: Weighted and Numeric), a generative model for random graphs with discrete labels and weighted edges. The model is easily generalised to edges labelled with an arbitrary number of numeric attributes. We include algorithms for fitting the parameters of the Agwanmodel to real-world graphs and for generating random graphs from the model. Using real-world directed and undirected graphs as input, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to graph structure.
Resumo:
Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs) with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI) approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs). Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.