936 resultados para weed biology
Resumo:
The Sericothripinae is a largely tropical group of about 140 species that are often strikingly bicoloured and have complex surface sculpture, but for which the biology is poorly known. Although 15 genera have been described in this subfamily, only three of these are currently recognised, with five new generic synonymies indicated here. In Australia, Sericothrips Haliday is introduced, with one European species deployed as a weed biological control agent. Hydatothrips Karny comprises 43 species worldwide, with six species found in Australia, of which two are shared with Southeast Asia, and four are associated with the native vine genus, Parsonsia. Neohydatothrips John comprises 96 species worldwide, with nine species in Australia, of which one is shared with Southeast Asia and two are presumably introduced from the Americas. Illustrated keys are provided to the three genera and 16 species from Australia, including six new species [Hydatothrips aliceae; H. bhattii; H. williamsi; Neohydatothrips barrowi, N. bellissi, N. katherinae]. One new specific synonym is recognised [Hydatothrips haschemi Girault (= H. palawanensis Kudo)], also four new generic synonyms [Neohydatothrips John (= Faureana Bhatti; Onihothrips Bhatti; Sariathrips Bhatti; Papiliothrips Bhatti); Sericothrips Haliday (= Sussericothrips Han)].
Resumo:
The majority of Australian weeds are exotic plant species that were intentionally introduced for a variety of horticultural and agricultural purposes. A border weed risk assessment system (WRA) was implemented in 1997 in order to reduce the high economic costs and massive environmental damage associated with introducing serious weeds. We review the behaviour of this system with regard to eight years of data collected from the assessment of species proposed for importation or held within genetic resource centres in Australia. From a taxonomic perspective, species from the Chenopodiaceae and Poaceae were most likely to be rejected and those from the Arecaceae and Flacourtiaceae were most likely to be accepted. Dendrogram analysis and classification and regression tree (TREE) models were also used to analyse the data. The latter revealed that a small subset of the 35 variables assessed was highly associated with the outcome of the original assessment. The TREE model examining all of the data contained just five variables: unintentional human dispersal, congeneric weed, weed elsewhere, tolerates or benefits from mutilation, cultivation or fire, and reproduction by vegetative propagation. It gave the same outcome as the full WRA model for 71% of species. Weed elsewhere was not the first splitting variable in this model, indicating that the WRA has a capacity for capturing species that have no history of weediness. A reduced TREE model (in which human-mediated variables had been removed) contained four variables: broad climate suitability, reproduction in less or than equal to 1 year, self-fertilisation, and tolerates and benefits from mutilation, cultivation or fire. It yielded the same outcome as the full WRA model for 65% of species. Data inconsistencies and the relative importance of questions are discussed, with some recommendations made for improving the use of the system.
Resumo:
Aconophora compressa (Hemiptera: Membracidae), a biological control agent introduced against the weed Lantana camara (Verbenaceae) in Australia, has since been observed on several non-target plant species, including native mangrove Avicennia marina (Acanthaceae). In this study we evaluated the suitability of two native mangroves, A. marina and Aegiceras corniculatum (Myrsinaceae), for the survival and development of A. compressa through no-choice field cage studies. The longevity of females was significantly higher on L. camara (57.7 ± 3.8 days) than on A. marina (43.3 ± 3.3 days) and A. corniculatum (45.7 ± 3.8 days). The proportion of females laying eggs was highest on L. camara (72%) followed by A. marina (36%) and A. corniculatum (17%). More egg batches per female were laid on L. camara than on A. marina and A. corniculatum. Though more nymphs per shoot emerged on L. camara (29.9 ± 2.8) than on A. marina (13 ± 4.8) and A. corniculatum (10 ± 5.3), the number of nymphs that developed through to adults was not significantly different. The duration of nymphal development was longer on A. marina (67 ± 5.8 days) than on L. camara (48 ± 4 days) and A. corniculatum (43 ± 4.6 days). The results, which are in contrast to those from previous glasshouse and quarantine trials, provide evidence that A. compressa adults can survive, lay eggs and complete nymphal development on the two non-target native mangroves in the field under no-choice condition.
Resumo:
Weed management is one of the most important economic and agronomic issues facing farmers in Australia's grain regions. Weed species occurrence and abundance was monitored between 1997 and 2000 on 46 paddocks (sites) across 18 commercial farms located in the Northern Grain Region. The sites generally fell within 4 disjunct regions, from south to north: Liverpool Plains, Moree, Goondiwindi and Kingaroy. While high species richness was found (139 species or species groups), only 8 species occurred in all 4 regions and many (56 species) only occurred at 1 site or region. No species were observed at every site but 7 species (Sonchus spp., Avena spp., Conyza spp., Echinochloa spp., Convolvulus erubescens, Phalaris spp. and Lactuca serriola) were recorded on more than 70% of sites. The average number of species observed within crops after treatment and before harvest was less than 13. Species richness tended to be higher in winter pulse crops, cotton and in fallows, but overall was similar at the different sampling seasons (summer v. winter). Separate species assemblages associated with the Goondiwindi and Kingaroy regions were identified by correspondence analysis but these appeared to form no logical functional group. The species richness and density was generally low, demonstrating that farmers are managing weed populations effectively in both summer and winter cropping phases. Despite the apparent adoption of conservation tillage, an increase in opportunity cropping and the diversity of crops grown (13) there was no obvious effect of management practices on weed species richness or relative abundance. Avena spp. and Sonchus spp. were 2 of the most dominant weeds, particularly in central and southern latitudes of the region; Amaranthus spp. and Raphanus raphanistrum were the most abundant species in the northern part of the region. The ubiquity of these and other species shows that continued vigilance is required to suppress weeds as a management issue.
Resumo:
The main weeds and weed management practices undertaken in broad acre dryland cropping areas of north-eastern Australia have been identified. The information was collected in a comprehensive postal survey of both growers and agronomists from Dubbo in New South Wales (NSW) through to Clermont in central Queensland, where 237 surveys were returned. A very diverse weed flora of 105 weeds from 91 genera was identified for the three cropping zones within the region (central Queensland, southern Queensland and northern NSW). Twenty-three weeds were common to all cropping zones. The major common weeds were Sonchus oleraceus, Rapistrum rugosum, Echinochloa spp. and Urochloa panicoides. The main weeds were identified for both summer and winter fallows, and sorghum, wheat and chickpea crops for each of the zones, with some commonality as well as floral uniqueness recorded. More genera were recorded in the fallows than in crops, and those in summer fallows exceeded the number in winter. Across the region, weed management relied heavily on herbicides. In fallows, glyphosate and mixes with glyphosate were very common, although the importance of the glyphosate mix partner differed among the cropping zones. Use and importance of pre-emergence herbicides in-crop varied considerably among the zones. In wheat, more graminicides were used in northern NSW than in southern Queensland, and virtually none were used in central Queensland, reflecting the differences in winter grass weed flora across the region. Atrazine was the major herbicide used in sorghum, although metolachlor was also used predominantly in northern NSW. Fallow and inter-row cultivation were used more often in the southern areas of the region. Grazing of fallows was more prominent in northern NSW. High crop seeding rates were not commonly recorded indicating that growers are not using crop competition as a tool for weed management. Although many management practices were recorded overall, few growers were using integrated weed management, and herbicide resistance has been and continues to be an issue for the region.
Resumo:
Parthenium is a weed of global significance affecting many countries in Asia, Africa, and the Pacific Islands. Parthenium causes severe human and animal health problems, agricultural losses as well as serious environmental problems. Management options for parthenium include chemical, physical, legislative, fire, mycoherbicides, agronomic practices, competitive displacement and classical biological control. The ability of parthenium to grow in a wide range of habitats, its persistent seed bank, and its allelopathic potential make its management difficult. No single management option would be adequate to manage parthenium across all habitats, and there is a need to integrate various management options (e.g. grazing management, competitive displacement, cultural practices) with classical biological control as a core management option.
Resumo:
Understanding plant response to herbivory facilitates the prioritisation of guilds of specialist herbivores as biological control agents based on their potential impacts. Prickly acacia (Acacia nilotica ssp. indica) is a weed of national significance in Australia and is a target for biological control. Information on the susceptibility of prickly acacia to herbivory is limited, and there is no information available on the plant organ (i.e. leaf, shoot and root in isolation or in combination) most susceptible to herbivory. We evaluated the ability of prickly acacia seedlings, to respond to different types of simulated herbivory (defoliation, shoot damage, root damage and combinations), at varying frequencies (no herbivory, single, two and three events of herbivory) to identify the type and frequency of herbivory that will be required to reduce the growth and vigour. Defoliation and shoot damage, individually, had a significant negative impact on prickly acacia seedlings. For the defoliation to be effective, more than two defoliation events were required, whereas a single bout of shoot damage was enough to cause a significant reduction in plant vigour. A combination of defoliation + shoot damage had the greatest negative impact. The study highlights the need to prioritise specialist leaf and shoot herbivores as potential biological control agents for prickly acacia.
Resumo:
Parthenium is a serious problem in several tropical and sub-tropical areas around the world and particularly an emerging problem in southern Africa. It is a Weed of National Significance in Australia. The chapter summarises current knowledge about the taxonomy, biology, distribution, ecology, impacts and biological control of the weed worldwide. Queensland has led attempts to achieve biological control of parthenium since it first began foreign exploration in 1977. Since then nine insects and two rusts have been released in Queensland. Some of these have since been, or will be, used by other countries. The program has brought significant benefits to Queensland through an increase in grass biomass in some areas. Instances of non-target attack by one agent, particularly in India, are discussed with the conclusion that the effects were ultimately negligible and possibly due to parthenium pollen lodging on the leaves of non-target plants. The insects introduced for parthenium have also given a measure of control for the very closely related weeds, ragweed and Noogoora burr. The paper draws a conclusion that local climatic conditions are very important when considering whether a successful agent in one country will be useful in a second country.
Resumo:
Chromolaena, or Siam weed, is a serious problem in several tropical and sub-tropical areas around the world. In our own region, it is a serious weed in New Guinea, East Timor and Indonesia and is also under an eradication regime in North Queensland. The chapter summarises current knowledge about the taxonomy, biology, distribution, ecology, impacts and control of the weed. Biological control has been a major multinational initiative against this weed in recent years and these efforts are described in some detail. Interestingly agents have not been universally effective because of weed biotype differences and climate. Considerable success has been achieved in New Guinea, principally with the tephritid fly Cecidocares connex and by the efforts of Michael Day, Rachel McFadyen and Graham Donnelly from Alan Fletcher Research Station.
Resumo:
This paper discusses how spread of weeds can be minimised by improved knowledge of the weed’s ecology and dispersal, and by better surveillance and treatment methods. Undertaking simple prevention activities reduces the risk of spreading weeds with minimal costs to projects and they noted that field staff and researchers can inadvertently become vectors of weed spread if they do not take adequate precautions. The authors describe several techniques that can be adopted and reference their observations to the eradication program for Siam weed, Chromolaena odorata.
Resumo:
The authors identify and track processes that have resulted in the detection of six tropical weeds targeted for eradication. The habitats and distributions of these species make detection by field officers and members of the public more likely than targeted searches. The eradication program is increasing the scope of detection processes by conducting and documenting activities to improve weed recognition amongst public, government and industry stakeholders.
Resumo:
The aquatic herb Limnocharis flava, native to tropical America, is the target of an eradication program in Queensland but little is known about its reproductive biology. Their field and glasshouse studies showed that seedlings exhibited relatively high survival (64%) and that fruits containing over 1000 seeds could be produced on young plants within 46 days, at any time of the year. Mature fruits, follicles and seeds were also buoyant. The authors findings were incorporated into the eradication program and influenced the frequency of infestation monitoring.
Resumo:
Mike Day and colleagues recently published their paper 'Factors influencing the release and establishment of weed biocontrol agents' in Proceedings of the 16th Australian Weeds Conference. The CRC for Australian Weed Management facilitated an investigation into the factors influencing the release and establishment of weed biological control agents on a wide variety of Australian weeds. The investigation improved the understanding of post-release ecology of biocontrol agents and generated recommendations for best practice. Factors affecting successful establishment on the weed include host plant characteristics, size of releases, dispersal power of the agent, predation and parasitism, and climate. A best practice guide was produced by the CRC to assist practitioners in designing robust release strategies to increase rates of establishment.
Resumo:
Wayne Vogler and Nikki Owen recently published their paper 'Grader grass (Themeda quadrivalvis): changing savannah ecosystems' in Proceedings of the 16th Australian Weeds Conference. Grader grass is an invasive exotic 'high biomass' grass from India that is increasing its distribution in northern Australia. It is unpalatable and can dominate ecosystems, thereby decreasing grazing animal production, degrading conservation areas and increasing fire intensity and hazard. They studied aspects of its biology at a field site in north Queensland where the initial biomass of the grass layer was found to be 70% grader grass. Grader grass also produced 80% of the seed input into this ecosystem during the first growing season. These factors, in combination with a large viable seed bank and rapid germination at the start of the wet season, demonstrate the potential of grader grass to dominate and degrade the savannah ecosystems of northern Australia.