939 resultados para water source


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flow, recharge and transport dynamics in fractured rock aquifers with low lying rock outcrops is a largely unexplored area of study in hydrogeology. The purpose of this thesis is to examine these topics in an agricultural area in Eastern Ontario. The study consists of a regional scale groundwater quality study, an infiltration experiment that considers bacteria transport from the ground surface to a well, and a numerical modelling study that tests the parameters that affect surface infiltration of a tracer from a rock outcrop to a deeper horizontal fracture. In the water quality study, approximately 65% of the samples contained total coliform, 16% contained E. coli, and 1% contained nitrate-N at greater than 5 mg/L. Occurrence of E. coli increased when considering seasonality, where wells were drilled on rock outcrops, and for shallow well intervals. Nitrate-N did not occur above the Guidelines for Canadian Drinking Water Quality (Health Canada, 2012) of 10 mg/L. Rapid arrival times were observed in the infiltration study for both the microspheres (30 minutes) and a dye tracer (45 minutes) in a well approximately 6.0 m in horizontal and 2.8 m in vertical distance from the tracer source. Transport velocities were approximately 38.9 m/day for the dye tracer and 115.2 m/day for the colloidal tracer. Results of the model runs indicate that overburden can provide an effective protective layer to transport in fractures, that high groundwater velocities occur in larger fracture apertures and higher gradients dilute tracer concentrations, and that lower groundwater velocities occur with smaller fracture apertures and lower gradients result in elevated tracer concentrations. Lower rainfall rates, larger fracture apertures, early tracer time, larger gradients, and lower water levels maintained unsaturated conditions for longer time periods such that tracer transport was delayed until saturated conditions were attained. The overall heterogeneity of this aquifer environment creates a source water protection conundrum where the water quality is generally good, while transport can occur very quickly in proximity to rock outcrops and in areas with limited overburden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil contamination on the Elm Street site is located mainly underneath and near the building foundation. Groundwater contamination appears to extend beyond the property boundaries to the west towards the Fox River, which is approximately 1100 feet west of the site. The groundwater contamination is located in a mixed industrial, commercial and residential area. It is not clear at this point whether there may be multiple sources of contamination in the area. Currently the public water supply is only available to some properties along Route 120, where there is a water main in place. Most of the homes and businesses in the area use private wells for their water source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis provides a detailed study of methods for dissolving oxygen in water to reduce water requirements for fish farming. The principal sources of oxygen are air or pure oxygen gas. Aeration methods have the distinct advantage of the universal availability of air. However, the effectiveness of such methods is diminished by the presence of nitrogen in the air and, in general, the maintenance of dissolved oxygen levels above 70% saturation is likely to result in excessive power requirements. Pure oxygen has five times the solubility of oxygen in air and it is possible, therefore to achieve much higher transfer rates. However, oxygen is expensive and its economic use is essential: it is important, therefore, to dissolve a high proportion of the oxygen. Four distinct oxygenation systems were evaluated by the author. A detailed analysis of a column oxygenator is given first. The column was designed so that the oxygen bubbles generated are trapped within the column until dissolved. In seawater, much smaller bubbles are formed and this led to the development of a jet oxygenator which disperses gas rubbles within the rearing tank. Both the above systems were designed primarily for oxygenating recycled tank water. For oxygenating a primary water source, a U -tube device was evaluated. Lastly, the possibility of supporting fish stocks without any external power source, other than a pressured supply of oxygen from a liquid oxygen store, was considered. Experience of running commercial-scale oxygenation systems in high-intensity fish farms has made it possible to estimate operating costs of both aeration and oxygenation systems. The significance of these costs is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concentrations and fluxes of C, N, and P were measured in dwarf and fringe mangrove wetlands along the Taylor River, Florida, USA from 1996 to 1998. Data from these studies revealed considerable spatial and temporal variability. Concentrations of C, N, and P in the dwarf wetland showed seasonal trends, while water source was better at explaining concentrations in the fringe wetland. The total and dissolved organic carbon (TOC and DOC), total nitrogen (TN), and total phosphorus (TP) content of both wetlands was higher during the wet season or when water was flowing to the south (Everglades source). Concentrations of nitrate plus nitrite (NOx –), ammonium (NH4 +), and soluble reactive phosphorus (SRP) in the fringe wetland were all highest during the dry season or northerly flow (bay source). Nutrient concentrations most effectively explained patterns of flux in both wetlands. Increased wetland uptake of a given constituent was usually a function of its availability in the water column. However, the release of NOx – from the dwarf wetland was related to the NH4 + concentration, suggesting a nitrification signal. Nitrogen flux in the dwarf wetland was also related to surface water salinity and temperature. Our findings indicate that freshwater Everglades marshes are an important source of dissolved organic matter to these wetlands, while Florida Bay may be a source of dissolved inorganic nutrients. Our data also suggest that temperature, salinity, and nutrient concentrations (as driven by season and water source) influence patterns of materials flux in this mangrove wetland. Applying long-term water quality data to the relationships we extracted from these flux data, we estimated that TN and TP were imported by the dwarf wetland 87 ± 10 and 48 ± 17% of the year, respectively. With Everglades restoration, modifications in freshwater delivery may have considerable effects on the exchanges of nutrients and organic matter in these transitional mangrove wetlands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coastal ecosystems lie at the forefront of sea level rise. We posit that before the onset of actual inundation, sea level rise will influence the species composition of coastal hardwood hammocks and buttonwood (Conocarpus erectus L.) forests of the Everglades National Park based on tolerance to drought and salinity. Precipitation is the major water source in coastal hammocks and is stored in the soil vadose zone, but vadose water will diminish with the rising water table as a consequence of sea level rise, thereby subjecting plants to salt water stress. A model is used to demonstrate that the constraining effect of salinity on transpiration limits the distribution of freshwater-dependent communities. Field data collected in hardwood hammocks and coastal buttonwood forests over 11 years show that halophytes have replaced glycophytes. We establish that sea level rise threatens 21 rare coastal species in Everglades National Park and estimate the relative risk to each species using basic life history and population traits. We review salinity conditions in the estuarine region over 1999–2009 and associate wide variability in the extent of the annual seawater intrusion to variation in freshwater inflows and precipitation. We also examine species composition in coastal and inland hammocks in connection with distance from the coast, depth to water table, and groundwater salinity. Though this study focuses on coastal forests and rare species of South Florida, it has implications for coastal forests threatened by saltwater intrusion across the globe.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Short-term (daily) and seasonal variations in concentration and flux of dissolved organic carbon (DOC) were examined over 15 tidal cycles in a riverine mangrove wetland along Shark River, Florida in 2003. Due to the influence of seasonal rainfall and wind patterns on Shark River’s hydrology, samplings were made to include wet, dry and transitional (Norte) seasons. We used a flume extending from a tidal creek to a basin forest to measure vertical (vegetated soil/water column) and horizontal (mangrove forest/tidal creek) flux of DOC. We found significant (p < 0.05) variations in surface water temperature, salinity, conductivity, pH and mean concentration of DOC with season. Water temperature and salinity followed seasonal patterns of air temperature and rainfall, while mean DOC concentration was highest during the dry season (May), followed by the wet (October) and ‘Norte’ (December) seasons. This pattern of DOC concentration may be due to a combination of litter production and inundation pattern of the wetland. In contrast to daily (between tides) variation in DOC flux between the mangrove forest and tidal creek, daily variations of mean water quality were not significant. However, within-tide variation of DOC flux, dissolved oxygen content and salinity was observed. This indicated that the length of inundation and water source (freshwater vs. saltwater) variation across tidal cycles influenced water quality and DOC flux in the water column. Net DOC export was measured in October and December, suggesting the mangrove forest was a source of DOC to the adjacent tidal creek during these periods. Net annual export of DOC from the fringe mangrove to both the tidal creek and basin mangrove forest was 56 g C m−2 year−1. The seasonal pattern in our flux results indicates that DOC flux from this mangrove forest may be governed by both freshwater discharge and tidal range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The contamination of aquatic environments is a phenomenon that dates back the origins of human civilizations and was amplified by the advent of industrial processes. The Jundiaí river , Macaíba's main water source, suffering discharge of effluents from various industries. The study work´s in two fronts, the environmental perception front was conducted through semistructured interviews whose textile effluent was appointed by the population as the main problem in the river. It was observed that nearly all respondents had concerns about the environment. In addition, there is an inclusion of individuals as the cause of the problem, because a significant part recognizes that its activities may cause damage to the environment and people's health. In other front, the experimental monitoring of water quality was conducted through ecotoxicological tests and physiochemical analysis that proposed to assess Pomacea lineata .Mysidopsis juniae isolated effect of textile effluent and its influence on the river compared with the limits established by Brazilian law. Although the physio-chemical analysis shows is inconclusive about the participation of the textile effluent in environmental contamination of the river, the ecotoxicological tests have shown to blunt the signal that the effluent may present a risk to aquatic organisms and consequently to human health. Thus, an interdisciplinary way it was possible to study the cause of the environmental problem identified by the population in the realization phase and measurable effect on water quality analysis in the river by means of the tests mentioned.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reservoirs are water sources built along the fluvial basins, between rivers and dams made by concrete or earth. In Brazil they are built for different purposes, standing out the generation of energy (hydroelectric power station), flowing regulation, water reserves and flooding control, therefore they have played and still play an important role in the modern society.In the Northeastern semiarid region, they are typically used to supply cities and as a source of food.In the state of Rio Grande do Norte, the large reservoirs are intended for the same purpose.The cities settled in the riverbanks, or which have river channels crossing them, face flooding related problems. In the city of Macaíba-RN, flooding occurred systematically during the rainy season, causing great inconvenience to the local population.As product of the collective claim Tabatinga Reservoir in Jundiaí river was built, upstream of the city. Facing this background, this thesis aimed to assess the sócio-environmental quality of this reservoir.To achieve this goal, methodologies pointed to assess water quality along with the aplication of a questionnaire were used aimed to verify the quality of water and to know the perception of the residents from urban and rural área settled near to the reservoir was performed. The results showed the existence of conflicts of residents of rural communities and the presence of the reservoir, while for the city's population, the reservoir is considered not only the right solution to solve flooding in urban areas, but also as economic source for the rural population. Considering the water source assessment, this study concluded that the Tabatinga Reservoir is unfit for human use, due to the presence of metals of toxicological significance with the potential to elicit damage to the genetic material of individuals that use water from this reservoir, leading to cause serious risks to health population.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Well-dated benthic foraminifer oxygen isotopic records (d18O) from different water depths and locations within the Atlantic Ocean exhibit distinct patterns and significant differences in timing over the last deglaciation. This has two implications: on the one hand, it confirms that benthic d18O cannot be used as a global correlation tool with millennial-scale precision, but on the other hand, the combination of benthic isotopic records with independent dating provides a wealth of information on past circulation changes. Comparing new South Atlantic benthic isotopic data with published benthic isotopic records, we show that (1) circulation changes first affected benthic d18O in the 1000-2200 m range, with marked decreases in benthic d18O taking place at ~17.5 cal. kyr B.P. (ka) due to the southward propagation of brine waters generated in the Nordic Seas during Heinrich Stadial 1 (HS1) cold period; (2) the arrival of d18O-depleted deglacial meltwater took place later at deeper North Atlantic sites; (3) hydrographic changes recorded in North Atlantic cores below 3000 m during HS1 do not correspond to simple alternations between northern- and southern-sourced water but likely reflect instead the incursion of brine-generated deep water of northern as well as southern origin; and (4) South Atlantic waters at ~44°S and ~3800 m depth remained isolated from better-ventilated northern-sourced water masses until after the resumption of North Atlantic Deep Water (NADW) formation at the onset of the Bølling-Allerod, which led to the propagation of NADW into the South Atlantic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acknowledgements This work was funded by Natural Science Foundation of China under grant numbers of 41071337 and 40830528 and jointly by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The environment affects our health, livelihoods, and the social and political institutions within which we interact. Indeed, nearly a quarter of the global disease burden is attributed to environmental factors, and many of these factors are exacerbated by global climate change. Thus, the central research question of this dissertation is: How do people cope with and adapt to uncertainty, complexity, and change of environmental and health conditions? Specifically, I ask how institutional factors, risk aversion, and behaviors affect environmental health outcomes. I further assess the role of social capital in climate adaptation, and specifically compare individual and collective adaptation. I then analyze how policy develops accounting for both adaptation to the effects of climate and mitigation of climate-changing emissions. In order to empirically test the relationships between these variables at multiple levels, I combine multiple methods, including semi-structured interviews, surveys, and field experiments, along with health and water quality data. This dissertation uses the case of Ethiopia, Africa’s second-most populous nation, which has a large rural population and is considered very vulnerable to climate change. My fieldwork included interviews and institutional data collection at the national level, and a three-year study (2012-2014) of approximately 400 households in 20 villages in the Ethiopian Rift Valley. I evaluate the theoretical relationships between households, communities, and government in the process of adaptation to environmental stresses. Through my analyses, I demonstrate that water source choice varies by individual risk aversion and institutional context, which ultimately has implications for environmental health outcomes. I show that qualitative measures of trust predict cooperation in adaptation, consistent with social capital theory, but that measures of trust are negatively related with private adaptation by the individual. Finally, I describe how Ethiopia had some unique characteristics, significantly reinforced by international actors, that led to the development of an extensive climate policy, and yet with some challenges remaining for implementation. These results suggest a potential for adaptation through the interactions among individuals, communities, and government in the search for transformative processes when confronting environmental threats and climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flow, recharge and transport dynamics in fractured rock aquifers with low lying rock outcrops is a largely unexplored area of study in hydrogeology. The purpose of this thesis is to examine these topics in an agricultural area in Eastern Ontario. The study consists of a regional scale groundwater quality study, an infiltration experiment that considers bacteria transport from the ground surface to a well, and a numerical modelling study that tests the parameters that affect surface infiltration of a tracer from a rock outcrop to a deeper horizontal fracture. In the water quality study, approximately 65% of the samples contained total coliform, 16% contained E. coli, and 1% contained nitrate-N at greater than 5 mg/L. Occurrence of E. coli increased when considering seasonality, where wells were drilled on rock outcrops, and for shallow well intervals. Nitrate-N did not occur above the Guidelines for Canadian Drinking Water Quality (Health Canada, 2012) of 10 mg/L. Rapid arrival times were observed in the infiltration study for both the microspheres (30 minutes) and a dye tracer (45 minutes) in a well approximately 6.0 m in horizontal and 2.8 m in vertical distance from the tracer source. Transport velocities were approximately 38.9 m/day for the dye tracer and 115.2 m/day for the colloidal tracer. Results of the model runs indicate that overburden can provide an effective protective layer to transport in fractures, that high groundwater velocities occur in larger fracture apertures and higher gradients dilute tracer concentrations, and that lower groundwater velocities occur with smaller fracture apertures and lower gradients result in elevated tracer concentrations. Lower rainfall rates, larger fracture apertures, early tracer time, larger gradients, and lower water levels maintained unsaturated conditions for longer time periods such that tracer transport was delayed until saturated conditions were attained. The overall heterogeneity of this aquifer environment creates a source water protection conundrum where the water quality is generally good, while transport can occur very quickly in proximity to rock outcrops and in areas with limited overburden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water quality of parking lot (~1,858 m2) stormwater runoff and its treated effluent flow were analyzed for total phosphorus (TP), total nitrogen (TN), total suspended solids (TSS), electrical conductivity (EC), copper, lead and zinc. The novel system under investigation, located at the University of Maryland, College Park, Maryland, includes a standard bioretention facility, underdrained to a cistern to store treated stormwater, and pumped to a vegetable garden for irrigation. The site abstraction, the average bioretention abstraction, and bowl volumes were estimated to be 8500, 4378, and 895 L, respectively; this indicates that rain events of more than 0.45 cm are necessary to produce runoff and more than 0.75 cm will produce system overflow. The cistern water quality indicates good-to-excellent treatment by the system. Compared to local tap water, cistern water has lower concentrations of TP, TN, EC (non-winter), copper, and zinc, indicating a good water source for irrigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The urban growth without the prior infrastructure has caused many environmental impacts such as the damage to quality of the water resources in the cities. Along with natural scarcity in some regions, this is one of the factors that limit the availability of drinking water. As a result, the conservation of drinking water is becoming one of the major concerns in sustainable architectural projects. Within this context, this dissertation proposes to develop the design of an educational building focusing on water consumption rationalization. The proposed project is located in UFRN Campus at Currais Novos, an area of warm and dry climate and low rainfall. The proposal seeks to integrate ways to reduce water consumption o to architecture, in order to exploit the advantages and savings. After quantifying the benefits achieved, it was concluded that it is possible to reduce significantly the drinking water consumption in educational buildings in universities using three principles: reduction the water consumption at the point of use, replacement of the water source and internal recycling. Calculations and simulations indicated that the proposed building may have water consumption up to 56% lower than if it would be provided by conventional facilities. Rationalization of water consumption brings direct and indirect benefits, with influences on the environmental, social and economic fields