932 resultados para vegetable oil
Resumo:
The objective of this study was to evaluate different strategies for the application of entomopathogenic nematodes (EPN). Three different models of spray nozzles with air induction (AI 11003, TTI 11003 and AD-IA 11004), three spray pressures (207, 413 and 720 kPa), four different additives for tank mixtures (cane molasses, mineral oil, vegetable oil and glycerin) and the influence of tank mixture stirring time were all evaluated for their effect on EPN (Steinernema feltiae) viability and pathogenicity. The different nozzles, at pressures of up to 620 kPa, were found to be compatible with S. feltiae. Vegetable oil, mineral oil and molasses were found to be compatible adjuvants for S. feltiae, and stirring in a motorized backpack sprayer for 30 minutes did not impact the viability or pathogenicity of this nematode. Appropriate techniques for the application of nematodes with backpack sprayers are discussed. © 2013 Moreira et al.
Resumo:
This study aimed to assess the nutritional composition of the fruit and the physicochemical and bioactive properties of jatoba (Hymenaea courbaril L.) pulp and seed oils. The lipid content of both fractions was below 6%. There was a significant presence of minerals, especially, sodium, potassium and phosphorus. The main macronutrient in pulp and seed was crude fiber, and considerable amounts of Vitamin C, 51.87 and 121.45. mg/100. g respectively, were found. The physicochemical properties demonstrated the good quality of the oils. The oxidative stability index was influenced by the composition of fatty acids reaching a value of 45.97. h for the jatoba pulp oil. The most abundant bioactive compounds were α-tocopherol (886.37 and 993.63. mg/kg) and β-sitosterol (61.83 and 91.09. mg/kg) for pulp and seed oils, respectively. Among the unsaturated fatty acids in the pulp, the oleic (46.09%) and linolenic acid (14.54%) stood out. The pulp and seed oils can be considered a valuable source for new industrial, cosmetic and pharmaceutical products. © 2013 Elsevier B.V.
Resumo:
This work was done to determine the maximum amount of liquid that the citrus leaves can hold back and compare alternative methods for estimating leaf area with the standard method of integrating electronic image. The alternative methods were leaf mirroring on paper and leaf digitalization and imagine analyzes. The spray retention capacity was evaluated with mitecide sprayed with cyhexatin (Sipcatin 500 CS) plus the treatments: combination of two adjuvants (mineral oil - Assist and vegetable oil - Veget'Oil) and two concentrations (10 and 15 mL of adjuvant L-1). The methods for estimating leaf area assessed do not differ between them. The maximum retention of liquids for the leaf occurred when vegetable oil in the application was used.
Resumo:
Pós-graduação em Ciências Biológicas (Botânica) - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)