968 resultados para vector method
Resumo:
A new method has been developed for prediction of transmembrane helices using support vector machines. Different coding schemes of protein sequences were explored, and their performances were assessed by crossvalidation tests. The best performance method can predict the transmembrane helices with sensitivity of 93.4% and precision of 92.0%. For each predicted transmembrane segment, a score is given to show the strength of transmembrane signal and the prediction reliability. In particular, this method can distinguish transmembrane proteins from soluble proteins with an accuracy of similar to99%. This method can be used to complement current transmembrane helix prediction methods and can be Used for consensus analysis of entire proteomes . The predictor is located at http://genet.imb.uq.edu.au/predictors/ SVMtm. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Background: Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of C-beta atoms in other residues within a sphere around the C-beta atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence. Results: We predict contact number from protein sequence using a novel support vector regression algorithm. Using protein local sequences with multiple sequence alignments (PSI-BLAST profiles), we demonstrate a correlation coefficient between predicted and observed contact numbers of 0.70, which outperforms previously achieved accuracies. Including additional information about sequence weight and amino acid composition further improves prediction accuracies significantly with the correlation coefficient reaching 0.73. If residues are classified as being either contacted or non-contacted, the prediction accuracies are all greater than 77%, regardless of the choice of classification thresholds. Conclusion: The successful application of support vector regression to the prediction of protein contact number reported here, together with previous applications of this approach to the prediction of protein accessible surface area and B-factor profile, suggests that a support vector regression approach may be very useful for determining the structure-function relation between primary sequence and higher order consecutive protein structural and functional properties.
Resumo:
Background: The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. Results: We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. Conclusion: The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
Resumo:
This paper evaluates a low-frequency FDTD method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current (DEMC) is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretizing of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modeling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multilayered spherical phantom model and a complete body model.
Resumo:
This study examines the forecasting accuracy of alternative vector autoregressive models each in a seven-variable system that comprises in turn of daily, weekly and monthly foreign exchange (FX) spot rates. The vector autoregressions (VARs) are in non-stationary, stationary and error-correction forms and are estimated using OLS. The imposition of Bayesian priors in the OLS estimations also allowed us to obtain another set of results. We find that there is some tendency for the Bayesian estimation method to generate superior forecast measures relatively to the OLS method. This result holds whether or not the data sets contain outliers. Also, the best forecasts under the non-stationary specification outperformed those of the stationary and error-correction specifications, particularly at long forecast horizons, while the best forecasts under the stationary and error-correction specifications are generally similar. The findings for the OLS forecasts are consistent with recent simulation results. The predictive ability of the VARs is very weak.
Resumo:
The Q parameter scales differently with the noise power for the signal-noise and the noise-noise beating terms in scalar and vector models. Some procedures for including noise in the scalar model largely under-estimate the Q parameter. We propose a simple method for including noise within a scalar model which will allow both the noise-noise dominated limit and the signal-noise dominated limit to be treated consistently. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Distributed digital control systems provide alternatives to conventional, centralised digital control systems. Typically, a modern distributed control system will comprise a multi-processor or network of processors, a communications network, an associated set of sensors and actuators, and the systems and applications software. This thesis addresses the problem of how to design robust decentralised control systems, such as those used to control event-driven, real-time processes in time-critical environments. Emphasis is placed on studying the dynamical behaviour of a system and identifying ways of partitioning the system so that it may be controlled in a distributed manner. A structural partitioning technique is adopted which makes use of natural physical sub-processes in the system, which are then mapped into the software processes to control the system. However, communications are required between the processes because of the disjoint nature of the distributed (i.e. partitioned) state of the physical system. The structural partitioning technique, and recent developments in the theory of potential controllability and observability of a system, are the basis for the design of controllers. In particular, the method is used to derive a decentralised estimate of the state vector for a continuous-time system. The work is also extended to derive a distributed estimate for a discrete-time system. Emphasis is also given to the role of communications in the distributed control of processes and to the partitioning technique necessary to design distributed and decentralised systems with resilient structures. A method is presented for the systematic identification of necessary communications for distributed control. It is also shwon that the structural partitions can be used directly in the design of software fault tolerant concurrent controllers. In particular, the structural partition can be used to identify the boundary of the conversation which can be used to protect a specific part of the system. In addition, for certain classes of system, the partitions can be used to identify processes which may be dynamically reconfigured in the event of a fault. These methods should be of use in the design of robust distributed systems.
Resumo:
We introduce a general matrix formulation for multiuser channels and analyse the special cases of Multiple-Input Multiple-Output channels, channels with interference and relay arrays under LDPC coding using methods developed for the statistical mechanics of disordered systems. We use the replica method to provide results for the typical overlaps of the original and recovered messages and discuss their implications. The results obtained are consistent with belief propagation and density evolution results but also complement them giving additional insights into the information dynamics of these channels with unexpected effects in some cases.
Resumo:
STUDY DESIGN: The twy/twy mouse undergoes spontaneous chronic mechanical compression of the spinal cord; this in vivo model system was used to examine the effects of retrograde adenovirus (adenoviral vector [AdV])-mediated brain-derived neurotrophic factor (BDNF) gene delivery to spinal neural cells. OBJECTIVE: To investigate the targeting and potential neuroprotective effect of retrograde AdV-mediated BDNF gene transfection in the chronically compressed spinal cord in terms of prevention of apoptosis of neurons and oligodendrocytes. SUMMARY OF BACKGROUND DATA: Several studies have investigated the neuroprotective effects of neurotrophins, including BDNF, in spinal cord injury. However, no report has described the effects of retrograde neurotrophic factor gene delivery in compressed spinal cords, including gene targeting and the potential to prevent neural cell apoptosis. METHODS: AdV-BDNF or AdV-LacZ (as a control gene) was injected into the bilateral sternomastoid muscles of 18-week old twy/twy mice for retrograde gene delivery via the spinal accessory motor neurons. Heterozygous Institute of Cancer Research mice (+/twy), which do not undergo spontaneous spinal compression, were used as a control for the effects of such compression on gene delivery. The localization and cell specificity of ß-galactosidase expression (produced by LacZ gene transfection) and BDNF expression in the spinal cord were examined by coimmunofluorescence staining for neural cell markers (NeuN, neurons; reactive immunology protein, oligodendrocytes; glial fibrillary acidic protein, astrocytes; OX-42, microglia) 4 weeks after gene injection. The possible neuroprotection afforded by retrograde AdV-BDNF gene delivery versus AdV-LacZ-transfected control mice was assessed by scoring the prevalence of apoptotic cells (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells) and immunoreactivity to active caspases -3, -8, and -9, p75, neurofilament 200 kD (NF), and for the oligodendroglial progenitor marker, NG2. RESULTS.: Four weeks after injection, the retrograde delivery of the LacZ marker gene was identified in cervical spinal neurons and some glial cells, including oligodendrocytes in the white matter of the spinal cord, in both the twy/twy mouse and the heterozygous Institute of Cancer Research mouse (+/twy). In the compressed spinal cord of twy/twy mouse, AdV-BDNF gene transfection resulted in a significant decrease in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells present in the spinal cord and a downregulation in the caspase apoptotic pathway compared with AdV-LacZ (control) gene transfection. There was a marked and significant increase in the areas of the spinal cord of AdV-BDNF-injected mice that were NF- and NG2-immunopositive compared with AdV-LacZ-injected mice, indicating the increased presence of neurons and oligodendrocytes in response to BDNF transfection. CONCLUSION: Our results demonstrate that targeted retrograde BDNF gene delivery suppresses apoptosis in neurons and oligodendrocytes in the chronically compressed spinal cord of twy/twy mouse. Further work is required to establish whether this method of gene delivery may provide neuroprotective effects in other situations of compressive spinal cord injury.
Resumo:
In this paper, we propose a text mining method called LRD (latent relation discovery), which extends the traditional vector space model of document representation in order to improve information retrieval (IR) on documents and document clustering. Our LRD method extracts terms and entities, such as person, organization, or project names, and discovers relationships between them by taking into account their co-occurrence in textual corpora. Given a target entity, LRD discovers other entities closely related to the target effectively and efficiently. With respect to such relatedness, a measure of relation strength between entities is defined. LRD uses relation strength to enhance the vector space model, and uses the enhanced vector space model for query based IR on documents and clustering documents in order to discover complex relationships among terms and entities. Our experiments on a standard dataset for query based IR shows that our LRD method performed significantly better than traditional vector space model and other five standard statistical methods for vector expansion.
Resumo:
Background - The binding between peptide epitopes and major histocompatibility complex proteins (MHCs) is an important event in the cellular immune response. Accurate prediction of the binding between short peptides and the MHC molecules has long been a principal challenge for immunoinformatics. Recently, the modeling of MHC-peptide binding has come to emphasize quantitative predictions: instead of categorizing peptides as "binders" or "non-binders" or as "strong binders" and "weak binders", recent methods seek to make predictions about precise binding affinities. Results - We developed a quantitative support vector machine regression (SVR) approach, called SVRMHC, to model peptide-MHC binding affinities. As a non-linear method, SVRMHC was able to generate models that out-performed existing linear models, such as the "additive method". By adopting a new "11-factor encoding" scheme, SVRMHC takes into account similarities in the physicochemical properties of the amino acids constituting the input peptides. When applied to MHC-peptide binding data for three mouse class I MHC alleles, the SVRMHC models produced more accurate predictions than those produced previously. Furthermore, comparisons based on Receiver Operating Characteristic (ROC) analysis indicated that SVRMHC was able to out-perform several prominent methods in identifying strongly binding peptides. Conclusion - As a method with demonstrated performance in the quantitative modeling of MHC-peptide binding and in identifying strong binders, SVRMHC is a promising immunoinformatics tool with not inconsiderable future potential.
Resumo:
The basic matrixes method is suggested for the Leontief model analysis (LM) with some of its components indistinctly given. LM can be construed as a forecast task of product’s expenses-output on the basis of the known statistic information at indistinctly given several elements’ meanings of technological matrix, restriction vector and variables’ limits. Elements of technological matrix, right parts of restriction vector LM can occur as functions of some arguments. In this case the task’s dynamic analog occurs. LM essential complication lies in inclusion of variables restriction and criterion function in it.
Resumo:
Long period grating was UV inscribed into a multicore fiber consisting of 120 single mode cores. The multicore fiber that hosts the grating was fusion spliced into a single mode fiber at both ends. The splice creates a taper transition between the two types of fiber that produces a nonadiabatic mode evolution; this results in the illumination of all the modes in the multicore fiber. The spectral characteristics of this fiber device as a function of curvature were investigated. The device yielded a significant spectral sensitivity as high as 1.23 nm/m-1 and 3.57 dB/m-1 to the ultra-low curvature values from 0 to 1 m-1. This fiber device can also distinguish the orientation of curvature experienced by the fiber as the long period grating attenuation bands producing either a blue or red wavelength shift. The finite element method (FEM) model was used to investigate the modal behavior in multicore fiber and to predict the phase-matching curves of the long period grating inscribed into multicore fiber. © 2014 Optical Society of America.
Resumo:
Stability of nonlinear impulsive differential equations with "supremum" is studied. A special type of stability, combining two different measures and a dot product on a cone, is defined. Perturbing cone-valued piecewise continuous Lyapunov functions have been applied. Method of Razumikhin as well as comparison method for scalar impulsive ordinary differential equations have been employed.
Resumo:
Owing to the limited cell size of eNodeB (eNB), the relay node has emerged as an attractive solution for the long-term evolution (LTE) system. The nonlinear limit of the alternative method to multipleinput and multiple-output (MIMO) based on frequency division multiplexing (FDM) for orthogonal FDM (OFDM) is analysed over varying transmission spans. In this reported work, it is shown that the degradation pattern over the linear, intermixing and nonlinear propagation regions is consistent for the 2 and the 2.6 GHz bands. The proposed bands experienced a linear increase in the error vector magnitude (EVM) for both the linear and the nonlinear regions proportional to the increasing transmission spans. In addition, an optical launch power between -2 and 2 dBm achieved a significantly lower EVM than the LTE limit of 8% for the 10-60 km spans. © The Institution of Engineering and Technology 2014.