955 resultados para urban climate
Resumo:
Traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) pose a serious threat to human and ecosystem health when washed off into receiving water bodies by stormwater. Climate change influenced rainfall characteristics makes the estimation of these pollutants in stormwater quite complex. The research study discussed in the paper developed a prediction framework for such pollutants under the dynamic influence of climate change on rainfall characteristics. It was established through principal component analysis (PCA) that the intensity and durations of low to moderate rain events induced by climate change mainly affect the wash-off of SVOCs and NVOCs from urban roads. The study outcomes were able to overcome the limitations of stringent laboratory preparation of calibration matrices by extracting uncorrelated underlying factors in the data matrices through systematic application of PCA and factor analysis (FA). Based on the initial findings from PCA and FA, the framework incorporated orthogonal rotatable central composite experimental design to set up calibration matrices and partial least square regression to identify significant variables in predicting the target SVOCs and NVOCs in four particulate fractions ranging from >300-1 μm and one dissolved fraction of <1 μm. For the particulate fractions range >300-1 μm, similar distributions of predicted and observed concentrations of the target compounds from minimum to 75th percentile were achieved. The inter-event coefficient of variations for particulate fractions of >300-1 μm were 5% to 25%. The limited solubility of the target compounds in stormwater restricted the predictive capacity of the proposed method for the dissolved fraction of <1 μm.
Resumo:
Adaptation is increasingly being viewed as a necessary response tool in respect of climate change effects. Though the subject of significant scholarly and professional attention, adaptation still continues to lag behind mitigation in the climate change discourse. However, this situation looks likely to change over the coming years due to a increasing scientific acceptance that certain climate change effects are now inevitable. The purpose of this research is to illustrate, consider and demonstrate how urban planning regimes can use some of their professional tools to develop adaptation strategies and interventions in urban systems. These tools include plan-making, development management, urban design and place-making. Urban systems contribute disproportionately to climate change and will also likely suffer considerably from the resulting effects. Moreover, the majority of the world’s population is now urbanised, suggesting that adaptation will be crucial in order to develop urban systems that are resilient to climate change effects. Informed by a reflexive, qualitative methodology, this paper offers an informed understanding and illustration of adaptation as a climate change response, its use in urban systems and some of the roles and strategies that planning may take in developing and implementing urban adaptation. It concludes that urban planning regimes can have key roles in adapting urban systems to numerous climate change effects.
Resumo:
The growing importance of logistics in increasingly globalised production and consumption systems strengthens the case for explicit consideration of the climate risks that may impact on the operation of ports in the future, as well as the formulation of adaptation responses that act to enhance their resilience. Within a logistics chain, seaports are functional nodes of significant strategic importance, and are considered as critical gateways linking local and national supply chains to global markets. However, they are more likely to be exposed to vagaries of climate-related extreme events due to their coastal locations. As such, they need to be adaptive and respond to the projected impacts of climate change, in particular extreme weather events. These impacts are especially important in the logistics context as they could result in varying degrees of business interruption; including business closure in the worst case scenario. Since trans-shipment of freight for both the import and export of goods and raw materials has a significant impact on Australia’s sustained economic growth it was considered important to undertake a study of port functional assets, to assess their vulnerability to climate change, to model the potential impacts of climate-related extreme events, and to highlight possible adaptation responses.
Resumo:
"This multi-disciplinary book provides practical solutions for safeguarding the sustainability of the urban water environment. Firstly, the importance of the urban water environment is highlighted and the major problems urban water bodies face and strategies to safeguard the water environment are explored. Secondly, the diversity of pollutants entering the water environment through stormwater runoff are discussed and modelling approaches for factoring in climate change and future urban and transport scenarios are proposed. Thirdly, by linking the concepts of sustainable urban ecosystems and sustainable urban and transport development, capabilities of two urban sustainability assessment models are demonstrated."--publisher website
Resumo:
Ensuring adequate water supply to urban areas is a challenging task due to factors such as rapid urban growth, increasing water demand and climate change. In developing a sustainable water supply system, it is important to identify the dominant water demand factors for any given water supply scheme. This paper applies principal components analysis to identify the factors that dominate residential water demand using the Blue Mountains Water Supply System in Australia as a case study. The results show that the influence of community intervention factors (e.g. use of water efficient appliances and rainwater tanks) on water demand are among the most significant. The result also confirmed that the community intervention programmes and water pricing policy together can play a noticeable role in reducing the overall water demand. On the other hand, the influence of rainfall on water demand is found to be very limited, while temperature shows some degree of correlation with water demand. The results of this study would help water authorities to plan for effective water demand management strategies and to develop a water demand forecasting model with appropriate climatic factors to achieve sustainable water resources management. The methodology developed in this paper can be adapted to other water supply systems to identify the influential factors in water demand modelling and to devise an effective demand management strategy.
Resumo:
Climate change impact on a groundwater-dependent small urban town has been investigated in the semiarid hard rock aquifer in southern India. A distributed groundwater model was used to simulate the groundwater levels in the study region for the projected future rainfall (2012-32) obtained from a general circulation model (GCM) to estimate the impacts of climate change and management practices on groundwater system. Management practices were based on the human-induced changes on the urban infrastructure such as reduced recharge from the lakes, reduced recharge from water and wastewater utility due to an operational and functioning underground drainage system, and additional water extracted by the water utility for domestic purposes. An assessment of impacts on the groundwater levels was carried out by calibrating a groundwater model using comprehensive data gathered during the period 2008-11 and then simulating the future groundwater level changes using rainfall from six GCMs Institute of Numerical Mathematics Coupled Model, version 3.0 (INM-CM. 3.0); L'Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL-CM4); Model for Interdisciplinary Research on Climate, version 3.2 (MIROC3.2); ECHAM and the global Hamburg Ocean Primitive Equation (ECHO-G); Hadley Centre Coupled Model, version 3 (HadCM3); and Hadley Centre Global Environment Model, version 1 (HadGEM1)] that were found to show good correlation to the historical rainfall in the study area. The model results for the present condition indicate that the annual average discharge (sum of pumping and natural groundwater outflow) was marginally or moderately higher at various locations than the recharge and further the recharge is aided from the recharge from the lakes. Model simulations showed that groundwater levels were vulnerable to the GCM rainfall and a scenario of moderate reduction in recharge from lakes. Hence, it is important to sustain the induced recharge from lakes by ensuring that sufficient runoff water flows to these lakes.
Resumo:
The better understanding of the interactions between climate change and air quality is an emerging priority for research and policy. Climate change will bring changes in the climate system, which will affect the concentration and dispersion of air pollutants. The main objective of the current study is to assess the impacts of climate change on air quality in 2050 over Portugal and Porto urban area. First, an evaluation and characterization of the air quality over mainland Portugal was performed for the period between 2002 and 2012. The results show that NO2, PM10 and O3 are the critical pollutants in Portugal. Also, the influence of meteorology on O3, NO2 and PM10 levels was investigate in the national main urban areas (Porto and Lisboa) and was verified that O3 has a statistically significant relationship with temperature in most of the components. The results also indicate that emission control strategies are primary regulators for NO2 and PM10 levels. After, understanding the national air quality problems and the influence that meteorology had in the historical air quality levels, the air quality modelling system WRF-CAMx was tested and the required inputs for the simulations were prepared to fulfil the main goal of this work. For the required air quality modelling inputs, an Emission Projections under RCP scenarios (EmiPro-RCP) model was developed to assist the estimation of future emission inventories for GHG and common air pollutants. Also, the current emissions were estimated for Portugal with a higher detailed disaggregation to improve the performance of the air quality simulations. The air quality modelling system WRF/CAMx was tested and evaluated over Portugal and Porto urban area and the results point out that is an adequate tool for the analysis of air quality under climate change. For this purpose, regional simulations of air quality during historical period and future (2045-2050) were conducted with CAMx version 6.0 to evaluate the impacts of simulated future climate and anthropogenic emission projections on air quality over the study area. The climate and the emission projections were produced under the RCP8.5 scenario. The results from the simulations point out, that if the anthropogenic emissions keep the same in 2050, the concentrations of NO2, PM10 and O3 will increase in Portugal. When, besides the climate change effects, is consider the projected anthropogenic emissions the annual mean concentrations of NO2 decrease significantly in Portugal and Porto urban area, and on the contrary the annual mean PM10 concentrations increases in Portugal and decrease in Porto urban area. The O3 results are mainly caused by the reduction of ozone precursors, getting the higher reductions in urban areas and increases in the surrounding areas. All the analysis performed for both simulations for Porto urban area support that, for PM10 and O3, there will be an increase in the occurrence of extreme values, surpassing the annual legislated parameters and having more daily exceedances. This study constitutes an innovative scientific tool to help in future air quality management in order to mitigate future climate change impacts on air quality.
Resumo:
Under low latitude conditions, minimization of solar radiation within the urban environment may often be a desirable criterion in urban design. The dominance of the direct component of the global solar irradiance under clear high sun conditions requires that the street solar access must be small. It is well known that the size and proportion of open spaces has a great influence on the urban microclimate This paper is directed towards finding the interaction between urban canyon geometry and incident solar radiation. The effect of building height and street width on the shading of the street surfaces and ground for different orientations have been examined and evaluated. It is aimed to explore the extent to which these parameters affect the temperature in the street. This work is based on air and surface temperature measurements taken in different urban street canyons in EL-Oued City (hot and and climate), Algeria. In general, the results show that there are less air temperature variations compared to the surface temperature which really depends on the street geometry and sky view factor. In other words, there is a big correlation between the street geometry, sky view factor and surface temperatures.
Resumo:
Under low latitude conditions, minimisation of solar irradiance within the urban environment may often be an important criterion in urban design. This can be achieved when the obstruction angle is large (high H/W ratio, H = height, W = width). Solar access to streets can always be decreased by increasing H/W to larger values. It is shown in this paper that the street canyon orientation (and not only the H/W ratio) has a considerable effect on solar shading and urban microclimate. The paper demonstrates through a series of shading simulation and temperature measurements that a number of useful relationships can be developed between the geometry and the microclimate of urban street canyons. These relationships are potentially helpful to assist in the formulation of urban design guidelines governing street dimensions and orientations for use by urban designers.
Resumo:
Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.
Resumo:
The Surface Urban Energy and Water Balance Scheme (SUEWS) is developed to include snow. The processes addressed include accumulation of snow on the different urban surface types: snow albedo and density aging, snow melting and re-freezing of meltwater. Individual model parameters are assessed and independently evaluated using long-term observations in the two cold climate cities of Helsinki and Montreal. Eddy covariance sensible and latent heat fluxes and snow depth observations are available for two sites in Montreal and one in Helsinki. Surface runoff from two catchments (24 and 45 ha) in Helsinki and snow properties (albedo and density) from two sites in Montreal are also analysed. As multiple observation sites with different land-cover characteristics are available in both cities, model development is conducted independent of evaluation. The developed model simulates snowmelt related runoff well (within 19% and 3% for the two catchments in Helsinki when there is snow on the ground), with the springtime peak estimated correctly. However, the observed runoff peaks tend to be smoother than the simulated ones, likely due to the water holding capacity of the catchments and the missing time lag between the catchment and the observation point in the model. For all three sites the model simulates the timing of the snow accumulation and melt events well, but underestimates the total snow depth by 18–20% in Helsinki and 29–33% in Montreal. The model is able to reproduce the diurnal pattern of net radiation and turbulent fluxes of sensible and latent heat during cold snow, melting snow and snow-free periods. The largest model uncertainties are related to the timing of the melting period and the parameterization of the snowmelt. The results show that the enhanced model can simulate correctly the exchange of energy and water in cold climate cities at sites with varying surface cover.
Resumo:
Recent urban air temperature increase is attributable to the climate change and heat island effects due to urbanization. This combined effects of urbanization and global warming can penetrate into the underground and elevate the subsurface temperature. In the present study, over-100 years measurements of subsurface temperature at a remote rural site were analysed, and an increasing rate of 0.17⁰C per decade at soil depth of 30cm due to climate change was identified in the UK, but the subsurface warming in an urban site showed a much higher rate of 0.85⁰C per decade at a 30cm depth and 1.18⁰C per decade at 100cm. The subsurface urban heat island (SUHI) intensity obtained at the paired urban-rural stations in London showed an unique 'U-shape', i.e. lowest in summer and highest during winter. The maximum SUHII is 3.5⁰C at 6:00 AM in December, and the minimum UHII is 0.2⁰C at 18:00PM in July. Finally, the effects of SUHI on the energy efficiency of the horizontal ground source heat pump (GSHP) were determined. Provided the same heat pump used, the installation at an urban site will maintain an overall higher COP compared with that at a rural site in all seasons, but the highest COP improvement can be achieved in winter.
Resumo:
This paper proposes a rights-based approach for participatory urban planning for climate change adaptation in urban areas. Participatory urban planning ties climate change adaptation to local development opportunities. Previous discussions suggest that participatory urban planning may help to understand structural inequalities, to gain, even if temporally, institutional support and to deliver a planning process in constant negotiation with local actors. Building upon an action research project which implemented a process of participatory urban planning for climate change in Maputo, Mozambique, this paper reflects upon the practical lessons that emerged from these experiences, in relation to the incorporation of climate change information, the difficulties to secure continued support from local governments and the opportunities for local impacts through the implementation of the proposals emerging from this process.