984 resultados para unsaturated soil suction drain evaporation
Resumo:
This paper examines the performance of unsaturated soils under repeated loading. As part of the research, a triaxial system was developed that incorporates small-strain measurements using Hall effect transducers, in addition to suction measurements taken using a psychrometer. Tests were conducted on samples of kaolin under constant water mass conditions. The results address the effects of compaction effort and water content at the time of compaction on the overall performance of unsaturated soils, under different amplitudes of loading and different confining pressures. The results show that suction in the sample reduced with increasing number of loading cycles of the same magnitude. The resilient modulus initially increased with increasing water content up to approximately optimum water content, and then reduced substantially with further increase in water content.
Resumo:
Compacted clay fills are generally placed at the optimum value of water content and, immediately after placement, they are unsaturated. Wetting might subsequently occur due, for example, to rainfall infiltration, which can cause volumetric deformation of the fill (either swell or collapse) with associated loss of shear strength and structural integrity. If swelling takes place under partially restrained deformation, due for example to the presence of a buried rigid structure or a retaining wall, additional stresses will develop in the soil and these can be detrimental to the stability of walling elements and other building assets. Factors such as dry density, overburden pressure, compaction water content and type of clay are known to influence the development of stresses. This paper investigates these factors by means of an advanced stress path testing programme performed on four different clays with different mineralogy, index properties and geological histories. Specimens of kaolin clay, London Clay, Belfast Clay and Ampthill Clay were prepared at different initial states and subjected to ‘controlled’ wetting, whereby the suction was reduced gradually to zero under laterally restrainedconditions (i.e. K0 conditions). The results showed that the magnitude of the increase in horizontal stresses (and therefore the increase of K0) is influenced by the overburden pressure, compaction water content, dry density at the time of compaction and mineralogy.
Resumo:
Suction is an important stress variable that is required for reliable predictions of the likely performance of unsaturated soils. The axis translation technique is the best established method of measuring or controlling suction; however, the success of this application is heavily dependent on the rating of the high air entry filter (HAF) and how it is incorporated into the testing system. This paper reports some basic experiments in which samples of unsaturated kaolin were brought to saturation in stages using 5 bar and 15 bar HAFs. The results have shown that the water equilibrium in unsaturated soils is greatly affected by the rating of filters. The findings also suggest that the flow through unsaturated soils is not necessarily governed by the one-dimensional consolidation theory that was developed for saturated soils, and this may be attributed to the bimodal pore size distribution of unsaturated soils.
Resumo:
The cocondensation of nickel with a number of unsaturated ligands was studied, as was the cocondensation with a number of mixed ligand systems. Enamines were found not to react with nickel while acrylonitrile was polymerized. In the mixed ligand syst.ems different products were obtained than when the ligands were cocondensed individually. Cocondensations of benzyl halide/allyl halide mixtures gave unstable products that were not observed when the halides were cocondensed individually. The effect of Kao-Wool insulation on nickel/benzyl halide cocondensations was found to be significant. Kao-Wool caused the bulk of the benzyl halide to be polymeri zed to a number of poly-benzylic species. An alkali metal reactor was designed for the evaporation of sodium and potassium atoms into cold solutions of metal halide and an or ganic substrate. This apparatus was used to synthesize Ni(P¢3 )3' but proved unsuccessful for synthesizing a nickel-enamine compound.
Resumo:
The country has witnessed tremendous increase in the vehicle population and increased axle loading pattern during the last decade, leaving its road network overstressed and leading to premature failure. The type of deterioration present in the pavement should be considered for determining whether it has a functional or structural deficiency, so that appropriate overlay type and design can be developed. Structural failure arises from the conditions that adversely affect the load carrying capability of the pavement structure. Inadequate thickness, cracking, distortion and disintegration cause structural deficiency. Functional deficiency arises when the pavement does not provide a smooth riding surface and comfort to the user. This can be due to poor surface friction and texture, hydro planning and splash from wheel path, rutting and excess surface distortion such as potholes, corrugation, faulting, blow up, settlement, heaves etc. Functional condition determines the level of service provided by the facility to its users at a particular time and also the Vehicle Operating Costs (VOC), thus influencing the national economy. Prediction of the pavement deterioration is helpful to assess the remaining effective service life (RSL) of the pavement structure on the basis of reduction in performance levels, and apply various alternative designs and rehabilitation strategies with a long range funding requirement for pavement preservation. In addition, they can predict the impact of treatment on the condition of the sections. The infrastructure prediction models can thus be classified into four groups, namely primary response models, structural performance models, functional performance models and damage models. The factors affecting the deterioration of the roads are very complex in nature and vary from place to place. Hence there is need to have a thorough study of the deterioration mechanism under varied climatic zones and soil conditions before arriving at a definite strategy of road improvement. Realizing the need for a detailed study involving all types of roads in the state with varying traffic and soil conditions, the present study has been attempted. This study attempts to identify the parameters that affect the performance of roads and to develop performance models suitable to Kerala conditions. A critical review of the various factors that contribute to the pavement performance has been presented based on the data collected from selected road stretches and also from five corporations of Kerala. These roads represent the urban conditions as well as National Highways, State Highways and Major District Roads in the sub urban and rural conditions. This research work is a pursuit towards a study of the road condition of Kerala with respect to varying soil, traffic and climatic conditions, periodic performance evaluation of selected roads of representative types and development of distress prediction models for roads of Kerala. In order to achieve this aim, the study is focused into 2 parts. The first part deals with the study of the pavement condition and subgrade soil properties of urban roads distributed in 5 Corporations of Kerala; namely Thiruvananthapuram, Kollam, Kochi, Thrissur and Kozhikode. From selected 44 roads, 68 homogeneous sections were studied. The data collected on the functional and structural condition of the surface include pavement distress in terms of cracks, potholes, rutting, raveling and pothole patching. The structural strength of the pavement was measured as rebound deflection using Benkelman Beam deflection studies. In order to collect the details of the pavement layers and find out the subgrade soil properties, trial pits were dug and the in-situ field density was found using the Sand Replacement Method. Laboratory investigations were carried out to find out the subgrade soil properties, soil classification, Atterberg limits, Optimum Moisture Content, Field Moisture Content and 4 days soaked CBR. The relative compaction in the field was also determined. The traffic details were also collected by conducting traffic volume count survey and axle load survey. From the data thus collected, the strength of the pavement was calculated which is a function of the layer coefficient and thickness and is represented as Structural Number (SN). This was further related to the CBR value of the soil and the Modified Structural Number (MSN) was found out. The condition of the pavement was represented in terms of the Pavement Condition Index (PCI) which is a function of the distress of the surface at the time of the investigation and calculated in the present study using deduct value method developed by U S Army Corps of Engineers. The influence of subgrade soil type and pavement condition on the relationship between MSN and rebound deflection was studied using appropriate plots for predominant types of soil and for classified value of Pavement Condition Index. The relationship will be helpful for practicing engineers to design the overlay thickness required for the pavement, without conducting the BBD test. Regression analysis using SPSS was done with various trials to find out the best fit relationship between the rebound deflection and CBR, and other soil properties for Gravel, Sand, Silt & Clay fractions. The second part of the study deals with periodic performance evaluation of selected road stretches representing National Highway (NH), State Highway (SH) and Major District Road (MDR), located in different geographical conditions and with varying traffic. 8 road sections divided into 15 homogeneous sections were selected for the study and 6 sets of continuous periodic data were collected. The periodic data collected include the functional and structural condition in terms of distress (pothole, pothole patch, cracks, rutting and raveling), skid resistance using a portable skid resistance pendulum, surface unevenness using Bump Integrator, texture depth using sand patch method and rebound deflection using Benkelman Beam. Baseline data of the study stretches were collected as one time data. Pavement history was obtained as secondary data. Pavement drainage characteristics were collected in terms of camber or cross slope using camber board (slope meter) for the carriage way and shoulders, availability of longitudinal side drain, presence of valley, terrain condition, soil moisture content, water table data, High Flood Level, rainfall data, land use and cross slope of the adjoining land. These data were used for finding out the drainage condition of the study stretches. Traffic studies were conducted, including classified volume count and axle load studies. From the field data thus collected, the progression of each parameter was plotted for all the study roads; and validated for their accuracy. Structural Number (SN) and Modified Structural Number (MSN) were calculated for the study stretches. Progression of the deflection, distress, unevenness, skid resistance and macro texture of the study roads were evaluated. Since the deterioration of the pavement is a complex phenomena contributed by all the above factors, pavement deterioration models were developed as non linear regression models, using SPSS with the periodic data collected for all the above road stretches. General models were developed for cracking progression, raveling progression, pothole progression and roughness progression using SPSS. A model for construction quality was also developed. Calibration of HDM–4 pavement deterioration models for local conditions was done using the data for Cracking, Raveling, Pothole and Roughness. Validation was done using the data collected in 2013. The application of HDM-4 to compare different maintenance and rehabilitation options were studied considering the deterioration parameters like cracking, pothole and raveling. The alternatives considered for analysis were base alternative with crack sealing and patching, overlay with 40 mm BC using ordinary bitumen, overlay with 40 mm BC using Natural Rubber Modified Bitumen and an overlay of Ultra Thin White Topping. Economic analysis of these options was done considering the Life Cycle Cost (LCC). The average speed that can be obtained by applying these options were also compared. The results were in favour of Ultra Thin White Topping over flexible pavements. Hence, Design Charts were also plotted for estimation of maximum wheel load stresses for different slab thickness under different soil conditions. The design charts showed the maximum stress for a particular slab thickness and different soil conditions incorporating different k values. These charts can be handy for a design engineer. Fuzzy rule based models developed for site specific conditions were compared with regression models developed using SPSS. The Riding Comfort Index (RCI) was calculated and correlated with unevenness to develop a relationship. Relationships were developed between Skid Number and Macro Texture of the pavement. The effort made through this research work will be helpful to highway engineers in understanding the behaviour of flexible pavements in Kerala conditions and for arriving at suitable maintenance and rehabilitation strategies. Key Words: Flexible Pavements – Performance Evaluation – Urban Roads – NH – SH and other roads – Performance Models – Deflection – Riding Comfort Index – Skid Resistance – Texture Depth – Unevenness – Ultra Thin White Topping
Resumo:
Accurate estimation of the soil water balance (SWB) is important for a number of applications (e.g. environmental, meteorological, agronomical and hydrological). The objective of this study was to develop and test techniques for the estimation of soil water fluxes and SWB components (particularly infiltration, evaporation and drainage below the root zone) from soil water records. The work presented here is based on profile soil moisture data measured using dielectric methods, at 30-min resolution, at an experimental site with different vegetation covers (barley, sunflower and bare soil). Estimates of infiltration were derived by assuming that observed gains in the soil profile water content during rainfall were due to infiltration. Inaccuracies related to diurnal fluctuations present in the dielectric-based soil water records are resolved by filtering the data with adequate threshold values. Inconsistencies caused by the redistribution of water after rain events were corrected by allowing for a redistribution period before computing water gains. Estimates of evaporation and drainage were derived from water losses above and below the deepest zero flux plane (ZFP), respectively. The evaporation estimates for the sunflower field were compared to evaporation data obtained with an eddy covariance (EC) system located elsewhere in the field. The EC estimate of total evaporation for the growing season was about 25% larger than that derived from the soil water records. This was consistent with differences in crop growth (based on direct measurements of biomass, and field mapping of vegetation using laser altimetry) between the EC footprint and the area of the field used for soil moisture monitoring. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Displacement studies on leaching of potassium (K+) were conducted under unsaturated steady state flow conditions in nine undisturbed soil columns (15.5 cm in diameter and 25 cm long). Pulses of K+ applied to columns of undisturbed soil were leached with distilled water or calcium chloride (CaCl2) at a rate of 18 mm h(-1). The movement of K+ in gypsum treated soil leached with distilled water was at a similar rate to that of the untreated soil leached with 15 mM CaCl2. The Ca2+ concentrations in the leachates were about 15 mM, the expected values for the dissolution of the gypsum. When applied K+ was displaced with the distilled water, K+ was retained in the top 10-12.5 cm depth of soil. In the undisturbed soil cores there is possibility of preferential flow and lack of K+ sorption. The application of gypsum and CaCl2 in the reclamation of sodic soils would be expected to leach K+ from soils. It can also be concluded that the use of sources of water for irrigation which have a high Ca2+ concentration can also lead to leaching of K+ from soil. Average effluent concentration of K+ during leaching period was 30.2 and 28.6 mg l(-1) for the gypsum and CaCl2 treated soils, respectively. These concentrations are greater than the recommended guideline of the World Health Organisation (12 mg K+ l(-1)).
Resumo:
The purpose of this study was to test the hypothesis that soil water content would vary spatially with distance from a tree row and that the effect would differ according to tree species. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare soil water distribution and dynamics in a maize monoculture with that under maize (Zea mays L.) intercropped with a 3-year-old tree row of Grevillea robusta A. Cunn. Ex R. Br. (grevillea) and hedgerow of Senna spectabilis DC. (senna). Soil water content was measured at weekly intervals during one cropping season using a neutron probe. Measurements were made from 20 cm to a depth of 225 cm at distances of 75, 150, 300 and 525 cm from the tree rows. The amount of water stored was greater under the sole maize crop than the agroforestry systems, especially the grevillea-maize system. Stored soil water in the grevillea-maize system increased with increasing distance from the tree row but in the senna-maize system, it decreased between 75 and 300 cm from the hedgerow. Soil water content increased least and more slowly early in the season in the grevillea-maize system, and drying was also evident as the frequency of rain declined. Soil water content at the end of the cropping season was similar to that at the start of the season in the grevillea-maize system, but about 50 and 80 mm greater in the senna-maize and sole maize systems, respectively. The seasonal water balance showed there was 140 mm, of drainage from the sole maize system. A similar amount was lost from the agroforestry systems (about 160 mm in the grevillea-maize system and 145 mm in the senna-maize system) through drainage or tree uptake. The possible benefits of reduced soil evaporation and crop transpiration close to a tree row were not evident in the grevillea-maize system, but appeared to greatly compensate for water uptake losses in the senna-maize system. Grevillea, managed as a tree row, reduced stored soil water to a greater extent than senna, managed as a hedgerow.
Resumo:
Data for water vapor adsorption and evaporation are presented for a bare soil (sandy loam, clay content 15%) in a southern Spanish olive grove. Water losses and gains were measured using eight high-precision minilysimeters, placed around an olive tree, which had been irrigated until the soil reached field capacity (similar to 0.22 m(3) m(-3)). They were subsequently left to dry for 10 days. A pair of lysimeters was situated at each of the main points of the compass (N, E, S, W), at a distance of 1 m (the inner set of lysimeters; ILS) and 2 m (the outer set of lysimeters; OLS), respectively, from the tree trunk. Distinct periods of moisture loss (evaporation) and moisture gain (vapor adsorption) could be distinguished for each day. Vapor adsorption often started just after noon and generally lasted until the (early) evening. Values of up to 0.7 mm of adsorbed water per day were measured. Adsorption was generally largest for the OLS (up to 100% more on a daily basis), and increased during the dry down. This was mainly the result of lower OLS surface soil moisture contents (period-average absolute difference similar to 0.005 m(3) m(-3)), as illustrated using various analyses employing a set of micrometeorological equations describing the exchange of water vapor between bare soil and the atmosphere. These analyses also showed that the amount of water vapor adsorbed by soils is very sensitive to changes in atmospheric forcing and surface variables. The use of empirical equations to estimate vapor adsorption is therefore not recommended.
Resumo:
This paper describes a method that employs Earth Observation (EO) data to calculate spatiotemporal estimates of soil heat flux, G, using a physically-based method (the Analytical Method). The method involves a harmonic analysis of land surface temperature (LST) data. It also requires an estimate of near-surface soil thermal inertia; this property depends on soil textural composition and varies as a function of soil moisture content. The EO data needed to drive the model equations, and the ground-based data required to provide verification of the method, were obtained over the Fakara domain within the African Monsoon Multidisciplinary Analysis (AMMA) program. LST estimates (3 km × 3 km, one image 15 min−1) were derived from MSG-SEVIRI data. Soil moisture estimates were obtained from ENVISAT-ASAR data, while estimates of leaf area index, LAI, (to calculate the effect of the canopy on G, largely due to radiation extinction) were obtained from SPOT-HRV images. The variation of these variables over the Fakara domain, and implications for values of G derived from them, were discussed. Results showed that this method provides reliable large-scale spatiotemporal estimates of G. Variations in G could largely be explained by the variability in the model input variables. Furthermore, it was shown that this method is relatively insensitive to model parameters related to the vegetation or soil texture. However, the strong sensitivity of thermal inertia to soil moisture content at low values of relative saturation (<0.2) means that in arid or semi-arid climates accurate estimates of surface soil moisture content are of utmost importance, if reliable estimates of G are to be obtained. This method has the potential to improve large-scale evaporation estimates, to aid land surface model prediction and to advance research that aims to explain failure in energy balance closure of meteorological field studies.
Resumo:
This study focuses on the mechanisms underlying water and heat transfer in upper soil layers, and their effects on soil physical prognostic variables and the individual components of the energy balance. The skill of the JULES (Joint UK Land Environment Simulator) land surface model (LSM) to simulate key soil variables, such as soil moisture content and surface temperature, and fluxes such as evaporation, is investigated. The Richards equation for soil water transfer, as used in most LSMs, was updated by incorporating isothermal and thermal water vapour transfer. The model was tested for three sites representative of semi-arid and temperate arid climates: the Jornada site (New Mexico, USA), Griffith site (Australia) and Audubon site (Arizona, USA). Water vapour flux was found to contribute significantly to the water and heat transfer in the upper soil layers. This was mainly due to isothermal vapour diffusion; thermal vapour flux also played a role at the Jornada site just after rainfall events. Inclusion of water vapour flux had an effect on the diurnal evolution of evaporation, soil moisture content and surface temperature. The incorporation of additional processes, such as water vapour flux among others, into LSMs may improve the coupling between the upper soil layers and the atmosphere, which in turn could increase the reliability of weather and climate predictions.
Resumo:
Models for water transfer in the crop-soil system are key components of agro-hydrological models for irrigation, fertilizer and pesticide practices. Many of the hydrological models for water transfer in the crop-soil system are either too approximate due to oversimplified algorithms or employ complex numerical schemes. In this paper we developed a simple and sufficiently accurate algorithm which can be easily adopted in agro-hydrological models for the simulation of water dynamics. We used a dual crop coefficient approach proposed by the FAO for estimating potential evaporation and transpiration, and a dynamic model for calculating relative root length distribution on a daily basis. In a small time step of 0.001 d, we implemented algorithms separately for actual evaporation, root water uptake and soil water content redistribution by decoupling these processes. The Richards equation describing soil water movement was solved using an integration strategy over the soil layers instead of complex numerical schemes. This drastically simplified the procedures of modeling soil water and led to much shorter computer codes. The validity of the proposed model was tested against data from field experiments on two contrasting soils cropped with wheat. Good agreement was achieved between measurement and simulation of soil water content in various depths collected at intervals during crop growth. This indicates that the model is satisfactory in simulating water transfer in the crop-soil system, and therefore can reliably be adopted in agro-hydrological models. Finally we demonstrated how the developed model could be used to study the effect of changes in the environment such as lowering the groundwater table caused by the construction of a motorway on crop transpiration. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Water and Global Change (WATCH) project evaluation of the terrestrial water cycle involves using land surface models and general hydrological models to assess hydrologically important variables including evaporation, soil moisture, and runoff. Such models require meteorological forcing data, and this paper describes the creation of the WATCH Forcing Data for 1958–2001 based on the 40-yr ECMWF Re-Analysis (ERA-40) and for 1901–57 based on reordered reanalysis data. It also discusses and analyses modelindependent estimates of reference crop evaporation. Global average annual cumulative reference crop evaporation was selected as a widely adopted measure of potential evapotranspiration. It exhibits no significant trend from 1979 to 2001 although there are significant long-term increases in global average vapor pressure deficit and concurrent significant decreases in global average net radiation and wind speed. The near-constant global average of annual reference crop evaporation in the late twentieth century masks significant decreases in some regions (e.g., the Murray–Darling basin) with significant increases in others.
Resumo:
A erodibilidade, particularizada como a susceptibilidade a erosão hídrica por fluxo superficial concentrado, é uma das propriedades de comportamento dos solos de maior complexidade pelo grande número de variáveis intervenientes. Estudada por diferentes áreas do conhecimento (Agronomia, Hidráulica, Geologia de Engenharia e Engenharia Geotécnica), tem no meio geotécnico a maior lacuna na sua quantificação e entendimento dos mecanismos envolvidos. O presente trabalho apresenta um estudo sobre a erodibilidade de solos residuais tropicais e subtropicais não saturados a partir de quatro perfis representativos dos processos erosivos e solos envolvidos na Região Metropolitana de Porto Alegre. Os solos dos principais horizontes de cada um destes perfis foram caracterizados física, química e mineralogicamente. As propriedades de resistência ao cisalhamento e colapsibilidade foram avaliadas por ensaios de cisalhamento direto convencionais e com controle de sucção e por ensaios de colapsibilidade em oedômetros, respectivamente. A erodibilidade foi avaliada em laboratório, diretamente por meio de ensaios de Inderbitzen e indiretamente por diferentes critérios e parâmetros baseados em outras características físicas e propriedades dos solos. A análise conjunta do comportamento dos solos em campo frente a erosão, da avaliação direta e indireta da erodibilidade e das propriedades geomecânicas investigadas conduziram à formulação de uma proposta de abordagem geotécnica para a erodibilidade dos solos residuais tropicais e subtropicais não saturados. Nesta proposta destaca–se a avaliação direta da erodibilidade por ensaios de Inderbitzen e a indicação de solos potencialmente erodíveis baseada no teor de finos, na plasticidade, no parâmetro K da USLE, na Razão de Dispersão de Middleton, na classificação e critério de erodibilidade MCT e na variação da coesão com a saturação pelo parâmetro variação de coesão (Δc) proposto. A proposta de abordagem geotécnica para a previsão da erodibilidade dos solos visa dotar o engenheiro geotécnico de uma ferramenta destinada à avaliação do potencial erosivo dos terrenos antes de uma iniciativa de ocupação urbana ou implantação de qualquer outra obra de engenharia. Esta avaliação é o passo inicial no direcionamento de medidas preventivas e que visem minimizar o impacto da obra ao meio físico natural, no que se refere a erosão hídrica por fluxo superficial concentrado.
Resumo:
Um equipamento triaxial convencional originalmente utilizado para ensaios em amostras de solos saturados saturada foi modificado para que fosse possível a realização de ensaios triaxiais em solos não saturados. As principais modificações foram a instalação de uma pedra cerâmica de alto valor de entrada de ar (300 kPa) na nova base da câmara triaxial e uma nova linha de aplicação de pressão para aplicação de pressão de ar na amostra. A técnica de translação de eixos é utilizada para evitar cavitação no sistema de aplicação de pressão. O solo estudado nesta pesquisa consiste de um colúvio de arenito localizado nas encostas da Formação Serra Geral, entre os municípios de Timbé do Sul (SC) e São José dos Ausentes (RS). Ensaios triaxiais convencionais foram realizados nas condições drenado e não drenado em amostras indeformadas para tensões de confinamento iniciais variando de 50 até 500 kPa; ensaios triaxiais convencionais foram realizados na condição drenada em amostras remoldadas para as tensões de confinamento iniciais de 50, 100 e 200kPa. Ensaios triaxiais com sucção controlada foram realizados na condição drenado em amostras indeformadas para as tensões normais líquidas de 50, 100, 150 e 200 kPa em níveis de sucção variando de 25 até 150 kPa. A partir dos resultados dos ensaios triaxiais determinou-se os parâmetros de resistência ao cisalhamento: c’ – intercepto coesivo efetivo; f´ - ângulo de atrito interno efetivo; fb – ângulo de atrito interno que quantifica a contribuição da sucção na resistência ao cisalhamento. O comportamento encontrado foi de uma envoltória de resistência ao cisalhamento não saturada bilinear com acréscimo na resistência ao cisalhamento para baixos níveis de sucção até aproximadamente 75 kPa, e após um decréscimo na resistência ao cisalhamento. A tensão normal líquida não influencia no valor de fb e a sucção não provoca alteração no valor de f´. O valor de fb apresenta valores superiores ao valor de f´, quando se utiliza o critério de ruptura clássico de resistência ao cisalhamento. Alguns critérios de determinação dos valores máximos de ruptura foram aplicados para um melhor entendimento do comportamento resistente deste material.