733 resultados para unsaturated fatty acid
Resumo:
Ten species of filamentous and multicellular thalloid algae (Phaeophyta) belonging to six genera of the class Dictyophyceae were collected from different seawater habitats of Karachi, Pakistan at the northern boundary of the Arabian Sea during September 1997 and July 1998. They were extracted in chloroform: methanol, saponified, subjected to column chromatography (CC, TLC), esterified and analysed for fatty acid (FA) composition initially by gas-liquid-chromatography (GLC) and finally by gas chromatography-mass spectrometry (GC-MS). Algae of the classes Laminariophyceae and Fucophyceae (Phaeophyta) displayed only a few SCFAs, PUFAs and substituted FAs, no VLCFA, C22 UFA, CFA, DCFA and monoynoic FA, large amount of C16:0, very large quantity of C18:1, very small RCCL and FA-diversity, C18 UFAs up to four DBs, C20 UFAs up to three DBs only. They were characterized by the largest amount of C18:1, lowest degree of unsaturation of C20 UFAs, lack of C22 UFAs, the shortest RCCL and the smallest FA-diversity as compared to other phyla.
Resumo:
Six species of multicellular, thalloid, brown algae, belonging to five genera of the classes Laminariophyceae and Fucophyceae were collected from the coastal areas of Buleji near Karachi (Pakistan) during October 1997 and February 1998. They were extracted in chloroform: methanol, saponified, subjected to column chromatography (CC, TLC), esterified and analysed for fatty acid (FA) composition initially by gas-liquid-chromatography (GLC) and finally by gas chromatography-mass spectrometry (GC-MS). They displayed only a few SCFAs, PUFAs and substituted FAs, no VLCFA, C22 UFA, CFA, DCFA and monoynoic FA, large amount of CI6:0, very large quantity of C18:1, very small RCCL and FA-diversity, C18 UFAs up to four DBs, C20 UFAs up to three DBs only. They were characterized by the largest amount of C18:1, lowest degree of unsaturation of C20 UFAs, lack of C22 UFAs, the shortest RCCL and the smallest FA-diversity as compared to other phyla.
Resumo:
The present study aimed production of a new product with various texture and sensory properties in chase of the impetus for increasing human consumption considering suitable resources of Kilka fish in Caspian Sea. Following deheading, gutting, and brining, common Kilka were battered in two different formulations, i.e. simple batter and tempura batter, via automated predusting machinery and then, they were fried through flash frying for 30 seconds at 170°C in sunflower oil after they were breaded with bread crumbs flour. The products were subjected to continuous freezing at -40°C and were kept at -18°C in cold storage for four months once they were packed. Chemical composition (protein, fat, moisture, and ash), fatty acid profiles (29 fatty acids), chemical indices of spoilage (peroxide value, thiobarbituric acid, free fatty acids, and volatile nitrogen), and microbial properties (total bacteria count and coliform count) were compared in fresh and breaded Kilka at various times before frying (raw breaded Kilka), after frying (zero-phase), and in various months of frozen storage (phases 1, 2, 3, and 4). Organoleptic properties of breaded Kilka (i.e. odor, taste, texture, crispiness, cohesiveness of batter) and general acceptability in the phases 0, 1, 2, 3, and 4 were evaluated. The results obtained from chemical composition and fatty acid profiles in common Kilka denoted that MUFA, PUFA, and SFA were estimated to be 36.96, 32.85, and 29.12 g / 100g lipid, respectively. Levels of ù-3 and ù-6 were 7.6 and 1.12 g / 100 gr lipid, respectively. Docosahexaonoic acid (20.79%) was the highest fatty acid in PUFA group. ù-3/ù-6 and PUFA/SFA ratios were 7.6 and 1.12, respectively. The high rates of the indices and high percentage of ù-3 fatty acid in common Kilka showed that the fish can be considered as invaluable nutritional and fishery resources and commonsensical consumption of the species may reduce the risk of cardiovascular diseases. Frying breaded Kilka affected overall fat and moisture contents so that moisture content in fried breaded Kilka decreased significantly compared to raw breaded Kilka, while it was absolutely reverse for fat content. Overall fat content in tempura batter treatment was significantly lower than that of simple batter treatment (P≤0.05). Presence of hydrocolloids, namely proteins, starch, gum, and other polysaccharides, in tempura batter may prohibit moisture evaporation and placement with oil during frying process in addition to boosting water holding capacity through confining water molecules. During frying process, fatty acids composition of breaded Kilka with various batters changed so that rates of some fatty acids such as Palmitic acid (C16:0), Stearic acid (C18:0), Oleic acid (C18:1 ù-9cis), and linoleic acid (C18:3 ù-3) increased considerably following frying; however, ù-3/ù-6, PUFA/SFA, and EPA+DHA/C16:0 ratios (Polyan index) decreased significantly after frying. ù-3/ù-6, PUFA/SFA, and EPA+DHA/C16:0 ratios in tempura batter treatment were higher than those of simple batter treatment which is an indicator of higher nutritional value of breaded Kilka with tempura batter. Significant elevations were found in peroxide, thiobarbituric acid, and free fatty acids in fried breaded Kilka samples compared to raw samples which points to fat oxidation during cooking process. Overall microorganism count and coliform count decreased following heating process. Both breaded Kilka samples were of high sanitation quality at zero-phase according to ICMSF Standard. The results acquired from organoleptic evaluation declared that odor, cohesiveness, and general acceptability indices, among others, had significant differences between the treatments (P≤0.05). In all evaluated properties, breaded Kilka with tempura batter in different phases gained higher scores than breaded Kilka with simple batter. During cold storage of various treatments of breaded Kilka, total lipid content, PUFA, MUFA, ù-3, ù- 3/ù-6, PUFA/SFA, Polyen index decreased significantly. The mentioned reductions in addition to significant elevation of spoilage indices, namely peroxide, thiobarbituric acid, and free fatty acids, during frozen storage, indicate to oxidation and enzymatic mechanism activity during frozen storage of breaded Kilka. Considering sensory evaluation at the end of the fourth month and TVB-N contents exceeded eligible rate in the fourth month, shelf life of the products during frozen storage was set to be three months at -18°C. The results obtained from statistical tests indicate to better quality of breaded Kilka processed with tempura batter compared to simple batter in terms of organoleptic evaluation, spoilage indices, and high quality of fat in various sampling phases.
Resumo:
This experiment was conducted to investigate the effect of using n-3 HUFA and Vitamin C enriched Artemia urmiana Nauplii Five difference treament were tested: for Caspian salmon (Salmo trutta caspius) larvae compare with artificial food in five treatment: (1) Artificial food, (2) Newly hatched Artemia (3) n-3 HUFA enriched Artemia (4) n-3 HUFA + 10% Ascorbyl Palmitate enriched Artemia (5) n-3 HUFA+20% Ascorbyl palmitate enriched Artemia during 15 days then all treatment were fed with artificial food during 20 days. In days of 15, larvae fed with newly hatched Artemia didn’t show significant difference of growth rate and survival compared to larvae fed with n-3 HUFA and Vitamn C enriched live food (p<0.05), However all treatment which fed live food have better growth rate and survival compred to larvae fed artificial food. Larvae fed with enriched Artemia with n-3 HUFA + 20% Ascorbyl palmitate has best result of temperature resistance at 26'C and 28'C. There is not significant difference between treatment (1) and (2), (3) and in this manner between (2), (3) and (4), (5) (P>0.05). In days of 35, larvae fed n-3 HUFA + 10% and 20% Ascorbyl pamlitate show better wet weight and dry weight compared to other treatment (P<0.05). Larvae fed n-3 HUFA Artemia showed significant difference compared to treatment (1) and (2), However there is not significant difference between treatment (1) and (2). Larvae fed artificial food show less and significant difference of survival compared to other treatment (P<0.05). Larvae fed artificial food show least of temperature resistance at 26'C and 28'C , However, there is not significant difference between all treatment (P<0.05).
Resumo:
Enzymatic activities and fatty acid methyl esters (FAMEs) in the sediments of two eutrophic lakes in Wuhan city were investigated. The results showed phosphatase and dehydrogenase activities in the lotus zone and plant floating bed zone were significantly lower than those in other sites, and urease activity was the highest where microorganism agents were put in. Fatty acid group compositions indicated the predominance of aerobic bacteria in the surface sediments in shallow lakes. The ratios of FAMEs specific for bacteria and Gram-positive bacteria exibited significant differences between the two lakes. The results of trans to cis indicated that the microorganisms in Lake Yuehu could adapt themselves to environmental stress better. The enzymatic activities and FAMEs showed differences in different sites, indicating that ecological restoration measures and environmental conditions could affect lake sediment to some extent. But the monitoring, work would be done in series to exactly evaluate the effect of the remediation measures.
Resumo:
Nannochloropsis sp. was grown with different levels of nitrate, phosphate, salinity and temperature with CO2 at 2,800 mu l l(-1). Increased levels of NaNO3 and KH2PO4 raised protein and polyunsaturated fatty acids (PUFAs) contents but decreased carbohydrate, total lipid and total fatty acids (TFA) contents. Nannochloropsis sp. grew well at salinities from 22 to 49 g l(-1), and lowering salinity enhanced TFA and PUFAs contents. TFA contents increased with the increasing temperature but PUFAs contents decreased. The highest eicosapentaenoic acid (EPA, 20:5 omega 3) content based on the dry mass was above 3% under low N (150 mu M NaNO3) or high N (3000 mu M NaNO3) condition. Excessive nitrate, low salinity and temperature are thus favorable factors for improving EPA yields in Nannochloropsis sp.
Resumo:
A unicellular marine picoplankton, Nannochloropsis sp., was grown under CO2-enriched photoautotrophic or/and acetate-added mixotrophic conditions. Photoautotrophic conditions with enriched CO2 of 2800 mul CO2 l(-1) and aeration gave the highest biomass yield (634 mg dry wt l(-1)), the highest total lipid content (9% of dry wt), total fatty acids (64 mg g(-1) dry wt), polyunsaturated fatty acids (35% total fatty acids) and eicosapentaenoic acid (EPA, 20:5omega3) (16 mg g(-1) dry wt or 25% of total fatty acids). Mixotrophic cultures gave a greater protein content but less carbohydrates. Adding sodium acetate (2 mM) decreased the amounts of the total fatty acids and EPA. Elevation of CO2 in photoautotrophic culture thus enhances growth and raises the production of EPA in Nannochloropsis sp.
Resumo:
Metabonomics, the study of metabolites and their roles in various disease states, is a novel methodology arising from the post-genomics era. This methodology has been applied in many fields, including work in cardiovascular research and drug toxicology. In this study, metabonomics method was employed to the diagnosis of Type 2 diabetes mellitus (DM2) based on serum lipid metabolites. The results suggested that serum fatty acid profiles determined by capillary gas chromatography combined with pattern recognition analysis of the data might provide an effective approach to the discrimination of Type 2 diabetic patients from healthy controls. And the applications of pattern recognition methods have improved the sensitivity and specificity greatly. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Multilayers of Y-type bilayers of pure and mixed erbium palmitate(EP), nonadecanate(Er) and behenate(EB) on CaF2 substrates were prepared by conventional Langmuir-Blodgett (LB) method. II is demonstrated that two systems composed of alternating bilayer of different fatty acid salts are unidimensional superlattices. These LB films were characterized by means of x-ray photoelectronic Spectrometry (XPS), FTIR and x-ray diffraction (XRD) measurements.
Resumo:
The influence of diet on lipid and fatty acid composition of the brine shrimp Artemia salina nauplii was investigated. Various diets with different lipid composition and fatty acid profiles were fed to nauplii for 2 weeks. The lipid composition of microalgal diets, Isochrysis galbana, Phaeodactylum tricornutum and Nannochloropsis oculata and baker's yeast was analyzed. Newly hatched nauplii were examined before the feeding experiment. It was shown that Artemia was able to incorporate and selectively concentrate some dietary lipids. Depot lipids were more sensitive to changes in the dietary lipid composition than the main structural lipids, polar lipids and sterols. Variations in the content of the lipid classes correlated with stage of development of the animal. The fatty acid composition of the animal varied with that of diet. The concentrations of saturated fatty acids were apparently supported in the nauplii by biosynthesis de novo. The acid 16:1(n-7) originated from the food. The concentration range of n-6 polyunsaturated fatty acids (PUFAs) remained constant through the accumulation from the diet. The proportion of n-3 PUFAs varied with their level in the diet. The dynamics of alteration of 20:5(n-3) content in Artemia fed on Isochrysis, which is poor in this acid, suggested a limited capacity for elongation and desaturation of 18:3(n-3) to 20:5(n-3). None of the diets provided dietary input of 22:6(n-3). (C) 1998 Elsevier Science Inc. All rights reserved.
Resumo:
Polyunsaturated fatty acids (PUFAs) are important components of infant and adult nutrition because they serve as structural elements of cell membranes. Fatty acid desaturases are responsible for the insertion of double bonds into pre-formed fatty acid chains in reactions that require oxygen and reducing equivalents. In this study, the genome-wide characterization of the fatty acid desaturases from seven eukaryotic photosynthetic microalgae was undertaken according to the conserved histidine-rich motifs and phylogenetic profiles. Analysis of these genomes provided insight into the origin and evolution of the pathway of fatty acid biosynthesis in eukaryotic plants. In addition, the candidate enzyme from Chlamydomonas reinhardtii with the highest similarity to the microsomal Delta 12 desaturase of Chlorella vulgaris was isolated, and its function was verified by heterologous expression in yeast (Saccharomyces cerevisiae).
Resumo:
The fatty acids composition in different parts of full-grown Rhopilema esculentum jellyfish from Yellow Sea was investigated. The lipids, extracted from the umbrella and oral arms and gonads of R. eculentum jellyfish, respectively were analysed by combined capillary gas chromatography/mass spectrometry. The results show that there are more than thirty kinds of fatty acids in jellyfish, and the fatty acid compositions of three parts of R. esculentum are almost the same. In the three parts, percentages of polyunsaturated fatty acids (PUFA) are high, and range from 36.23% to 38.74%. Docosahexaenoic acid (DHA), eicosatetraenoic acid (AA) and eicosapentaenoic acid (EPA) are three major PUFA.
Resumo:
In order to study the effects of different nitrogen source and concentration on the growth rate and fatty acid composition, a marine microalga Ellipsoidion sp. with a high content of eicosapentaenoic acid (EPA) was cultured in media with different nitrogen sources and concentrations. During the pre-logarithmic phase, the alga grew faster with ammonium as N source than with nitrate, but the reverse applied during the post-logarithmic phase. The alga grew poorly in N-free medium or medium with urea as the sole N source. In the same growth phase, ammonium medium resulted in higher yield of total lipid, but the EPA yield did not differ significantly different from that using nitrate medium. The maximum growth rate occurred in medium containing 1.28 mmol L-1 sodium nitrate, while maximum EPA and total lipid contents were reached at 1.92 mmol L-1, when EPA accounted for 27.9% total fatty acids. The growth rate kept stable when NH4Cl ranged from 0.64 to 2.56 mmol L-1, and the maximum content of total lipid and EPA occurred in the medium with 2.56 mmol L-1 NH4Cl. The EPA content was higher in the pre- than post-logarithmic phase, though the total lipid content was lower. The highest EPA content expressed as percent total fatty acid was 27.9% in nitrate medium and and 39.0% in ammonium medium.
Resumo:
The gastrointestinal tract (GIT) is a diverse ecosystem, and is colonised by a diverse array of bacteria, of which bifidobacteria are a significant component. Bifidobacteria are Gram-positive, saccharolytic, non-motile, non-sporulating, anaerobic, Y-shaped bacteria, which possess a high GC genome content. Certain bifidobacteria possess the ability to produce conjugated linoleic acid (CLA) from linoleic acid (LA) by a biochemical pathway that is hypothesised to be achieved via a linoleic isomerase. In Chapter two of this thesis it was found that the MCRA-specifying gene is not involved in CLA production in B. breve NCFB 2258, and that this gene specifies an oleate hydratase involved in the conversion of oleic acid into 10-hydroxystearic acid. Prebiotics are defined as non-digestible food ingredients that beneficially affect the host by selectively stimulating growth and/or activity of one or a limited number of bacteria in the colon. Key to the development of such novel prebiotics is to understand which carbohydrates support growth of bifidobacteria and how such carbohydrates are metabolised. In Chapter 3 of this thesis we describe the identification and characterisation of two neighbouring gene clusters involved in the metabolism of raffinose-containing carbohydrates (plus related carbohydrate melibiose) and melezitose by Bifidobacterium breve UCC2003. The fourth chapter of this thesis describes the analysis of transcriptional regulation of the raf and mel clusters. In the final experimental chapter two putative rep genes, designated repA7017 and repB7017, are identified on the megaplasmid pBb7017 of B. breve JCM 7017, the first bifidobacterial megaplasmid to be reported. One of these, repA7017, was subjected to an in-depth characterisation. The work described in this thesis has resulted in an improved understanding of bifidobacterial fatty acid and carbohydrate metabolism, Furthermore, attempts were made to develop novel genetic tools.