945 resultados para underwater locomotion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-contained electronic solid-state instrument capable of measuring the tension between the different parts of a trawl net in operation, has been designed and developed for the measurement in the range 0 to 300 kg with an accuracy of ± 2 kg. The instrument is useful for measuring the resistance to motion of various accessories of a trawl net. It consists of an inductive type underwater tension transducer and an electronic indicating meter kept on board the vessel, both the units being connected by electric cable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human locomotion is known to be influenced by observation of another person's gait. For example, athletes often synchronize their step in long distance races. However, how interaction with a virtual runner affects the gait of a real runner has not been studied. We investigated this by creating an illusion of running behind a virtual model (VM) using a treadmill and large screen virtual environment showing a video of a VM. We looked at step synchronization between the real and virtual runner and at the role of the step frequency (SF) in the real runner's perception of VM speed. We found that subjects match VM SF when asked to match VM speed with their own (Figure 1). This indicates step synchronization may be a strategy of speed matching or speed perception. Subjects chose higher speeds when VMSF was higher (though VM was 12km/h in all videos). This effect was more pronounced when the speed estimate was rated verbally while standing still. (Figure 2). This may due to correlated physical activity affecting the perception of VM speed [Jacobs et al. 2005]; or step synchronization altering the subjects' perception of self speed [Durgin et al. 2007]. Our findings indicate that third person activity in a collaborative virtual locomotive environment can have a pronounced effect on an observer's gait activity and their perceptual judgments of the activity of others: the SF of others (virtual or real) can potentially influence one's perception of self speed and lead to changes in speed and SF. A better understanding of the underlying mechanisms would support the design of more compelling virtual trainers and may be instructive for competitive athletics in the real world. © 2009 ACM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study on the effect of A.C. field on Puntius ticto, Heteropneustis fossilis and Tilapta mossambica was carried out using a slowly rising field intensity. Well defined reactions appeared in the species of fish with slight specific variations, depending on their orientation in the electrical field, on reaching the field intensity to specific value. These reactions can be distinguished as first reaction, when the fish perceive the surrounding field, jerky swimming when parallel to the current lines (longitudinal oscillotaxis), the static position finally adopted by the fish sooner or latter depending on the potential gradient (transverse oscillotaxis), and a state of muscular rigidity (tetanus). After switching off the current, a hypnotic condition prevailed in the treated fishes before returning to their normal swimming condition. The orientation of fish body in the field had an important bearing on the behaviour reactions and current thresholds necessary for those reactions. Initial reaction, jerky swimming between electrodes and hypnosis after stoppage of current appeared in fishes earlier when the fish body was in parallel to the current lines, whereas fishes responded to transverse oscillotaxis quickly when perpendicular to current lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response to external electric field (D. C.) of three different varieties of fish namely Puntius ticto, Heteropneustis fossilis and Tilapia mossambica having different anatomical and behavioural characteristics were studied. Clearly distinguished reactions occurred one after another m all the varieties of fish with the increase in field intensity with minor specific variations. These reactions can be broadly classified into initial start (first reaction), forced swimming (galvanotaxis), slackening of body muscle (galvanonarcosis) and state of muscular rigidity (tetanus). The orientation of the organism (projection of nervous element) to the surrounding field has been found to have important bearing on the behaviour reactions. Clearly differentiated anodic taxis and true narcosis set in when fish body axis was parallel to the lines of current conduction. But with greater angle between the body axis and the current lines, fish did not show well marked reactions. Fish body, when perpendicular to current lines responded for anodic curvature and off balance swimming followed by tetanus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aspects of the behaviour of three groups of Yunnan snub-nosed langurs, Rhinopithecus bieti, were observed over the course of three field seasons from 1986 to 1988. The major findings of the study were: (1) The habitats of R. bieti were mainly at heights of 3,600-4,150 m above sea level. (2) Groups were very large, with group sizes ranging from more than 100 to 269 individuals. (3) Spatial dispersion densities ranged from about 27 to 106 m2/individual during sleeping and resting, to feeding dispersions as large as 5,000-15,000 m2. (4) The locomotor repertoire of R. bieti consisted largely of walking, jumping and climbing. On very rare occasions, semibrachiation was observed, but true brachiation was never observed. The locomotor repertoires of juveniles were more diverse than those of subadults or adults. (5) Communication consisted mainly of eye-to-eye contact accompanied by murmurs; while loud calls were heard only rarely. (6) Groups moved between sleeping and feeding sites in single file. It is concluded that R. bieti is a mainly terrestrial species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lateral Leg Spring model (LLS) was developed by Schmitt and Holmes to model the horizontal-plane dynamics of a running cockroach. The model captures several salient features of real insect locomotion, and demonstrates that horizontal plane locomotion can be passively stabilized by a well-tuned mechanical system, thus requiring minimal neural reflexes. We propose two enhancements to the LLS model. First, we derive the dynamical equations for a more flexible placement of the center of pressure (COP), which enables the model to capture the phase relationship between the body orientation and center-of-mass (COM) heading in a simpler manner than previously possible. Second, we propose a reduced LLS "plant model" and biologically inspired control law that enables the model to follow along a virtual wall, much like antenna-based wall following in cockroaches. © 2006 Springer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locomotion has been one of the frequently used case studies in hands-on curricula in robotics education. Students are usually instructed to construct their own wheeled or legged robots from modular robot kits. In the development process of a robot students tend to emphasize on the programming part and consequently, neglect the design of the robot's body. However, the morphology of a robot (i.e. its body shape and material properties) plays an important role especially in dynamic tasks such as locomotion. In this paper we introduce a case study of a tutorial on soft-robotics where students were encouraged to focus solely on the morphology of a robot to achieve stable and fast locomotion. The students should experience the influence material properties exert on the performance of a robot and consequently, extract design principles. This tutorial was held in the context of the 2012 Summer School on Soft Robotics at ETH Zurich, which was one of the world's first courses specialized in the emerging field. We describe the tutorial set-up, the used hardware and software, the students assessment criteria as well as the results. Based on the high creativity and diversity of the robots built by the students, we conclude that the concept of this tutorial has great potentials for both education and research. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a new concept of locomotion for wheeled or legged robots through an object-free space. The concept is inspired by the behaviour of spiders forming silk threads to move in 3D space. The approach provides the possibility of variation in thread diameter by deforming source material, therefore it is useful for a wider coverage of payload by mobile robots. As a case study, we propose a technology for descending locomotion through a free space with inverted formation of threads in variable diameters. Inverted thread formation is enabled with source material thermoplastic adhesive (TPA) through thermally-induced phase transition. To demonstrate the feasibility of the technology, we have designed and prototyped a 300-gram wheeled robot that can supply and deform TPA into a thread and descend with the thread from an existing hanging structure. Experiment results suggest repeatable inverted thread formation with a diameter range of 1.1-4.5 mm, and a locomotion speed of 0.73 cm per minute with a power consumption of 2.5 W. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, there has been increasing interest in the study of gait patterns in both animals and robots, because it allows us to systematically investigate the underlying mechanisms of energetics, dexterity, and autonomy of adaptive systems. In particular, for morphological computation research, the control of dynamic legged robots and their gait transitions provides additional insights into the guiding principles from a synthetic viewpoint for the emergence of sensible self-organizing behaviors in more-degrees-of-freedom systems. This article presents a novel approach to the study of gait patterns, which makes use of the intrinsic mechanical dynamics of robotic systems. Each of the robots consists of a U-shaped elastic beam and exploits free vibration to generate different locomotion patterns. We developed a simplified physics model of these robots, and through experiments in simulation and real-world robotic platforms, we show three distinctive mechanisms for generating different gait patterns in these robots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand the underlying mechanisms of animals' agility, dexterity and efficiency in motor control, there has been an increasing interest in the study of gait patterns in biological and artificial legged systems. This paper presents a novel approach to the study of gait patterns which makes use of intrinsic mechanical dynamics of robotic systems. Each of these robots consists of a U-shape elastic beam and exploits free vibration to generate different gait patterns. We developed a conceptual model for these robots, and through simulation and real-world experiments, we show three distinct mechanisms for generating four different gait patterns in these robots. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Legged locomotion of biological systems can be viewed as a self-organizing process of highly complex system-environment interactions. Walking behavior is, for example, generated from the interactions between many mechanical components (e.g., physical interactions between feet and ground, skeletons and muscle-tendon systems), and distributed informational processes (e.g., sensory information processing, sensory-motor control in central nervous system, and reflexes) [21]. An interesting aspect of legged locomotion study lies in the fact that there are multiple levels of self-organization processes (at the levels of mechanical dynamics, sensory-motor control, and learning). Previously, the self-organization of mechanical dynamics was nicely demonstrated by the so-called Passive Dynamic Walkers (PDWs; [18]). The PDW is a purely mechanical structure consisting of body, thigh, and shank limbs that are connected by passive joints. When placed on a shallow slope, it exhibits natural bipedal walking dynamics by converting potential to kinetic energy without any actuation. An important contribution of these case studies is that, if designed properly, mechanical dynamics can generate a relatively complex locomotion dynamics, on the one hand, and the mechanical dynamics induces self-stability against small disturbances without any explicit control of motors, on the other. The basic principle of the mechanical self-stability appears to be fairly general that there are several different physics models that exhibit similar characteristics in different kinds of behaviors (e.g., hopping, running, and swimming; [2, 4, 9, 16, 19]), and a number of robotic platforms have been developed based on them [1, 8, 13, 22]. © 2009 Springer London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article discusses the issues of adaptive autonomous navigation as a challenge of artificial intelligence. We argue that, in order to enhance the dexterity and adaptivity in robot navigation, we need to take into account the decentralized mechanisms which exploit physical system-environment interactions. In this paper, by introducing a few underactuated locomotion systems, we explain (1) how mechanical body structures are related to motor control in locomotion behavior, (2) how a simple computational control process can generate complex locomotion behavior, and (3) how a motor control architecture can exploit the body dynamics through a learning process. Based on the case studies, we discuss the challenges and perspectives toward a new framework of adaptive robot control. © Springer-Verlag Berlin Heidelberg 2007.