968 resultados para two-dimensional (2D) ordering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main concerns when conducting a dam test is the acute determination of the hydrograph for a specific flood event. The use of 2D direct rainfall hydraulic mathematical models on a finite elements mesh, combined with the efficiency of vector calculus that provides CUDA (Compute Unified Device Architecture) technology, enables nowadays the simulation of complex hydrological models without the need for terrain subbasin and transit splitting (as in HEC-HMS). Both the Spanish PNOA (National Plan of Aereal Orthophotography) Digital Terrain Model GRID with a 5 x 5 m accuracy and the CORINE GIS Land Cover (Coordination of INformation of the Environment) that allows assessment of the ground roughness, provide enough data to easily build these kind of models

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between spot volume and variation for all protein spots observed on large format 2D gels when utilising silver stain technology and a model system based on mammalian NSO cell extracts is reported. By running multiple gels we have shown that the reproducibility of data generated in this way is dependent on individual protein spot volumes, which in turn are directly correlated with the coefficient of variation. The coefficients of variation across all observed protein spots were highest for low abundant proteins which are the primary contributors to process error, and lowest for more abundant proteins. Using the relationship between spot volume and coefficient of variation we show it is necessary to calculate variation for individual protein spot volumes. The inherent limitations of silver staining therefore mean that errors in individual protein spot volumes must be considered when assessing significant changes in protein spot volume and not global error. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results of application of the density functional theory (DFT) to adsorption and desorption in finite and infinite cylindrical pores accounting for the density distribution in radial and axial directions. Capillary condensation via formation of bridges is considered using canonical and grand canonical versions of the 2D DFT. The potential barrier of nucleation is determined as a function of the bulk pressure and the pore diameter. In the framework of the conventional assumptions on intermolecular interactions both 1D and 2D DFT versions lead to the same results and confirm the classical scenario of condensation and evaporation: the condensation occurs at the vapor-like spinodal point, and the evaporation corresponds to the equilibrium transition pressure. The analysis of experimental data on argon and nitrogen adsorption on MCM-41 samples seems to not completely corroborate this scenario, with adsorption branch being better described by the equilibrium pressure - diameter dependence. This points to the necessity of the further development of basic representations on the hysteresis phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiscale Molecular Dynamics/Hydrodynamics implementation of the 2D Mercedes Benz (MB or BN2D) [1] water model is developed and investigated. The concept and the governing equations of multiscale coupling together with the results of the two-way coupling implementation are reported. The sensitivity of the multiscale model for obtaining macroscopic and microscopic parameters of the system, such as macroscopic density and velocity fluctuations, radial distribution and velocity autocorrelation functions of MB particles, is evaluated. Critical issues for extending the current model to large systems are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissolved organic nitrogen (DON) represents the least understood part of the nitrogen cycle. Due to recent methodological developments, proteins now represent a potentially characterisable fraction of DON at the macromolecular level. We have applied polyacrylamide gel electrophoresis to characterise proteins in samples from a range of aquatic environments in the Everglades National Park, Florida, USA. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed that each sample has a complex and characteristic protein distribution. Some proteins appeared to be common to more than one site, and these might derive from dominant higher plant vegetation. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) provided better resolution; however, strong background hindered interpretation. Our results suggest that the two techniques can be used in parallel as a tool for protein characterisation: SDS-PAGE to provide a sample-specific fingerprint and 2D-PAGE to focus on the characterisation of individual protein molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solution-processed hybrid organic–inorganic lead halide perovskites are emerging as one of the most promising candidates for low-cost light-emitting diodes (LEDs). However, due to a small exciton binding energy, it is not yet possible to achieve an efficient electroluminescence within the blue wavelength region at room temperature, as is necessary for full-spectrum light sources. Here, we demonstrate efficient blue LEDs based on the colloidal, quantum-confined 2D perovskites, with precisely controlled stacking down to one-unit-cell thickness (n = 1). A variety of low-k organic host compounds are used to disperse the 2D perovskites, effectively creating a matrix of the dielectric quantum wells, which significantly boosts the exciton binding energy by the dielectric confinement effect. Through the Förster resonance energy transfer, the excitons down-convert and recombine radiatively in the 2D perovskites. We report room-temperature pure green (n = 7–10), sky blue (n = 5), pure blue (n = 3), and deep blue (n = 1) electroluminescence, with record-high external quantum efficiencies in the green-to-blue wavelength region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding and measuring the interaction of light with sub-wavelength structures and atomically thin materials is of critical importance for the development of next generation photonic devices.  One approach to achieve the desired optical properties in a material is to manipulate its mesoscopic structure or its composition in order to affect the properties of the light-matter interaction.  There has been tremendous recent interest in so called two-dimensional materials, consisting of only a single to a few layers of atoms arranged in a planar sheet.  These materials have demonstrated great promise as a platform for studying unique phenomena arising from the low-dimensionality of the material and for developing new types of devices based on these effects.  A thorough investigation of the optical and electronic properties of these new materials is essential to realizing their potential.  In this work we present studies that explore the nonlinear optical properties and carrier dynamics in nanoporous silicon waveguides, two-dimensional graphite (graphene), and atomically thin black phosphorus. We first present an investigation of the nonlinear response of nanoporous silicon optical waveguides using a novel pump-probe method. A two-frequency heterodyne technique is developed in order to measure the pump-induced transient change in phase and intensity in a single measurement. The experimental data reveal a characteristic material response time and temporally resolved intensity and phase behavior matching a physical model dominated by free-carrier effects that are significantly stronger and faster than those observed in traditional silicon-based waveguides.  These results shed light on the large optical nonlinearity observed in nanoporous silicon and demonstrate a new measurement technique for heterodyne pump-probe spectroscopy. Next we explore the optical properties of low-doped graphene in the terahertz spectral regime, where both intraband and interband effects play a significant role. Probing the graphene at intermediate photon energies enables the investigation of the nonlinear optical properties in the graphene as its electron system is heated by the intense pump pulse. By simultaneously measuring the reflected and transmitted terahertz light, a precise determination of the pump-induced change in absorption can be made. We observe that as the intensity of the terahertz radiation is increased, the optical properties of the graphene change from interband, semiconductor-like absorption, to a more metallic behavior with increased intraband processes. This transition reveals itself in our measurements as an increase in the terahertz transmission through the graphene at low fluence, followed by a decrease in transmission and the onset of a large, photo-induced reflection as fluence is increased.  A hybrid optical-thermodynamic model successfully describes our observations and predicts this transition will persist across mid- and far-infrared frequencies.  This study further demonstrates the important role that reflection plays since the absorption saturation intensity (an important figure of merit for graphene-based saturable absorbers) can be underestimated if only the transmitted light is considered. These findings are expected to contribute to the development of new optoelectronic devices designed to operate in the mid- and far-infrared frequency range.  Lastly we discuss recent work with black phosphorus, a two-dimensional material that has recently attracted interest due to its high mobility and direct, configurable band gap (300 meV to 2eV), depending on the number of atomic layers comprising the sample. In this work we examine the pump-induced change in optical transmission of mechanically exfoliated black phosphorus flakes using a two-color optical pump-probe measurement. The time-resolved data reveal a fast pump-induced transparency accompanied by a slower absorption that we attribute to Pauli blocking and free-carrier absorption, respectively. Polarization studies show that these effects are also highly anisotropic - underscoring the importance of crystal orientation in the design of optical devices based on this material. We conclude our discussion of black phosphorus with a study that employs this material as the active element in a photoconductive detector capable of gigahertz class detection at room temperature for mid-infrared frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1D and 2D patterning of uncharged micro- and nanoparticles via dielectrophoretic forces on photovoltaic z-cut Fe:LiNbO3 have been investigated for the first time. The technique has been successfully applied with dielectric micro-particles of CaCO3 (diameter d = 1-3 ?m) and metal nanoparticles of Al (d = 70 nm). At difference with previous experiments in x- and y-cut, the obtained patterns locally reproduce the light distribution with high fidelity. A simple model is provided to analyse the trapping process. The results show the remarkably good capabilities of this geometry for high quality 2D light-induced dielectrophoretic patterning overcoming the important limitations presented by previous configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-silico optimisation of a two-dimensional high performance liquid chromatography (2D-HPLC) separation protocol has been developed for the interogation of methamphetamine samples including model, real world seizure, and laboratory synthesised samples. The protocol used Drylab® software to rapidly identify the optimum separation conditions from a library of chromatography columns. The optimum separation space was provided by the Phenomonex Kinetex PFP column (first dimension) and an Agilent Poroshell 120 EC-C18 column (second dimension). To facilitate a rapid 2D-HPLC analysis the particle packed C18 column was replaced with a Phenomenex Onyx Monolithic C18 withought sacrificing separation performance. The Drylab® optimised and experimental separations matched very closely, highlighting the robust nature of HPLC simulations. The chemical information gained from an intermediate methamphetamine sample was significant and complimented that generated from a pure seizure sample. The influence of the two-dimensional separation on the analytical figures of merit was also investigated. The limits of detection for key analytes in the second dimension determined for methamphetamine (4.59 × 10-⁴ M), pseudoephedrine (4.03 × 10-4 M), caffeine (5.16 × 10-⁴ M), aspirin (9.32 × 10-4 M), paracetamol (5.93 × 10-4 M) and procaine (2.02 × 10-3 M).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wine aroma is an important characteristic and may be related to certain specific parameters, such as raw material and production process. The complexity of Merlot wine aroma was considered suitable for comprehensive two-dimensional gas chromatography (GCGC), as this technique offers superior performance when compared to one-dimensional gas chromatography (1D-GC). The profile of volatile compounds of Merlot wine was, for the first time, qualitatively analyzed by HS-SPME-GCxGC with a time-of-flight mass spectrometric detector (TOFMS), resulting in 179 compounds tentatively identified by comparison of experimental GCxGC retention indices and mass spectra with literature 1D-GC data and 155 compounds tentatively identified only by mass spectra comparison. A set of GCGC experimental retention indices was also, for the first time, presented for a specific inverse set of columns. Esters were present in higher number (94), followed by alcohols (80), ketones (29), acids (29), aldehydes (23), terpenes (23), lactones (16), furans (14), sulfur compounds (9), phenols (7), pyrroles (5), C13-norisoprenoids (3), and pyrans (2). GCxGC/TOFMS parameters were improved and optimal conditions were: a polar (polyethylene glycol)/medium polar (50% phenyl 50% dimethyl arylene siloxane) column set, oven temperature offset of 10ºC, 7 s as modulation period and 1.4 s of hot pulse duration. Co-elutions came up to 138 compounds in 1D and some of them were resolved in 2D. Among the coeluted compounds, thirty-three volatiles co-eluted in both 1D and 2D and their tentative identification was possible only due to spectral deconvolution. Some compounds that might have important contribution to aroma notes were included in these superimposed peaks. Structurally organized distribution of compounds in the 2D space was observed for esters, aldehydes and ketones, alcohols, thiols, lactones, acids and also inside subgroups, as occurred with esters and alcohols. The Fischer Ratio was useful for establishing the analytes responsible for the main differences between Merlot and non-Merlot wines. Differentiation among Merlot wines and wines of other grape varieties were mainly perceived through the following components: ethyl dodecanoate, 1-hexanol, ethyl nonanoate, ethyl hexanoate, ethyl decanoate, dehydro-2-methyl-3(2H)thiophenone, 3-methyl butanoic acid, ethyl tetradecanoate, methyl octanoate, 1,4 butanediol, and 6-methyloctan-1-ol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of the anhydrous 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the monocyclic heteroaromatic Lewis bases 2-aminopyrimidine, 3-(aminocarboxy) pyridine (nicotinamide) and 4-(aminocarbonyl) pyridine (isonicotinamide), namely 2-aminopyrimidinium 2-carboxy-4,5-dichlorobenzoate C4H6N3+ C8H3Cl2O4- (I), 3-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate C6H7N2O+ C8H3Cl2O4- (II) and the unusual salt adduct 4-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate 2-carboxymethyl-4,5-dichlorobenzoic acid (1/1/1) C6H7N2O+ C8H3Cl2O4-.C9H6Cl2O4 (III) have been determined at 130 K. Compound (I) forms discrete centrosymmetric hydrogen-bonded cyclic bis(cation--anion) units having both R2/2(8) and R2/1(4) N-H...O interactions. In compound (II) the primary N-H...O linked cation--anion units are extended into a two-dimensional sheet structure via amide-carboxyl and amide-carbonyl N-H...O interactions. The structure of (III) reveals the presence of an unusual and unexpected self-synthesized methyl monoester of the acid as an adduct molecule giving one-dimensional hydrogen-bonded chains. In all three structures the hydrogen phthalate anions are

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structure of the hydrated proton-transfer compound of the drug quinacrine [rac-N'-(6-chloro-2-methoxyacridin-9-yl)-N,N-diethylpentane-1,4-diamine] with 4,5-dichlorophthalic acid, C23H32ClN3O2+ . 2(C8H3Cl2O4-).4H2O (I), has been determined at 200 K. The four labile water molecules of solvation form discrete ...O--H...O--H... hydrogen-bonded chains parallel to the quinacrine side chain, the two N--H groups of which act as hydrogen-bond donors for two of the water acceptor molecules. The other water molecules, as well as the acridinium H atom, also form hydrogen bonds with the two anion species and extend the structure into two-dimensional sheets. Between these sheets there are also weak cation--anion and anion--anion pi-pi aromatic ring interactions. This structure represents only the third example of a simple quinacrine derivative for which structural data are available but differs from the other two in that it is unstable in the X-ray beam due to efflorescence, probably associated with the destruction of the unusual four-membered water chain structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To ascertain the effectiveness of object-centered three-dimensional representations for the modeling of corneal surfaces. Methods: Three-dimensional (3D) surface decomposition into series of basis functions including: (i) spherical harmonics, (ii) hemispherical harmonics, and (iii) 3D Zernike polynomials were considered and compared to the traditional viewer-centered representation of two-dimensional (2D) Zernike polynomial expansion for a range of retrospective videokeratoscopic height data from three clinical groups. The data were collected using the Medmont E300 videokeratoscope. The groups included 10 normal corneas with corneal astigmatism less than −0.75 D, 10 astigmatic corneas with corneal astigmatism between −1.07 D and 3.34 D (Mean = −1.83 D, SD = ±0.75 D), and 10 keratoconic corneas. Only data from the right eyes of the subjects were considered. Results: All object-centered decompositions led to significantly better fits to corneal surfaces (in terms of the RMS error values) than the corresponding 2D Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters (2, 4, 6, and 8 mm), and model orders (4th to 10th radial orders) The best results (smallest RMS fit error) were obtained with spherical harmonics decomposition which lead to about 22% reduction in the RMS fit error, as compared to the traditional 2D Zernike polynomials. Hemispherical harmonics and the 3D Zernike polynomials reduced the RMS fit error by about 15% and 12%, respectively. Larger reduction in RMS fit error was achieved for smaller corneral diameters and lower order fits. Conclusions: Object-centered 3D decompositions provide viable alternatives to traditional viewer-centered 2D Zernike polynomial expansion of a corneal surface. They achieve better fits to videokeratoscopic height data and could be particularly suited to the analysis of multiple corneal measurements, where there can be slight variations in the position of the cornea from one map acquisition to the next.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of the 1:1 proton-transfer compound from the reaction of L-tartaric acid with the azo-dye precursor aniline yellow [4-(phenylazo)aniline], 4-(phenyldiazenyl)anilinium hydrogen 2R,3R-tartrate C12H12N3+ . C4H6O6- has been determined at 200 K. The asymmetric unit of the compound contains two independent phenylazoanilinium cations and two hydrogen L-tartrate anions. The structure is unusual in that all four phenyl rings of both cations have identical 50% rotational disorder. The two hydrogen L-tartrate anions form independent but similar chains through head-to-tail carboxylic O--H...O~carboxyl~ hydrogen bonds [graph set C7] which are then extended into a two-dimensional hydrogen-bonded sheet structure through hydroxyl O--H...O hydrogen-bonding links. The anilinium groups of the phenyldiazenyl cations are incorporated into the sheets and also provide internal hydrogen-bonding extensions while their aromatic tails layer in the structure without significant interaction except for weak \p--\p interactions [minimum ring centroid separation, 3.844(3) \%A]. The hydrogen L-tartrate residues of both anions have the common short intramolecular hydroxyl O--H...O~carboxyl~ hydogen bonds. This work has provided a solution to the unusual disorder problem inherent in the structure of this salt as well as giving another example of the utility of the hydrogen tartrate in the generation of sheet substructures in molecular assembly processes.