690 resultados para trnL (UAA) intron
Resumo:
Despite various approaches, the production of biodegradable plastics such as polyhydroxybutyrate (PHB) in transgenic plants has met with limited success due largely to low expression levels. Even in the few instances where high levels of protein expression have been reported, the transgenic plants have been stunted indicating PHB is phytotoxic (Poirier 2002). This PhD describes the application of a novel virus-based gene expression technology, termed InPAct („In Plant Activation.), for the production of PHB in tobacco and sugarcane. InPAct is based on the rolling circle replication mechanism by which circular ssDNA viruses replicate and provides a system for controlled, high-level gene expression. Based on these features, InPAct was thought to represent an ideal system to enable the controlled, high-level expression of the three phb genes (phbA, phbB and phbC) required for PHB production in sugarcane at a preferred stage of plant growth. A Tobacco yellow dwarf virus (TbYDV)-based InPAct-phbA vector, as well as linear vectors constitutively expressing phbB and phbC were constructed and different combinations were used to transform tobacco leaf discs. A total of four, eight, three and three phenotypically normal tobacco lines were generated from discs transformed with InPAct-phbA, InPAct-phbA + p1300-TaBV P-phbB/phbC- 35S T, p1300-35S P-phbA-NOS T + p1300-TaBV P-phbB/phbC-35S T and InPAct-GUS, respectively. To determine whether the InPAct cassette could be activated in the presence of the TbYDV Rep, leaf samples from the eight InPActphbA + p1300-TaBV P-phbB/phbC-35S T plants were agroinfiltrated with p1300- TbYDV-Rep/RepA. Three days later, successful activation was indicated by the detection of episomes using both PCR and Southern analysis. Leaf discs from the eight InPAct-phbA + p1300-TaBV P-phbB/phbC-35S T transgenic plant lines were agroinfiltrated with p1300-TbYDV-Rep/RepA and leaf tissue was collected ten days post-infiltration and examined for the presence of PHB granules. Confocal microscopy and TEM revealed the presence of typical PHB granules in five of the eight lines, thus demonstrating the functionality of InPActbased PHB production in tobacco. However, analysis of leaf extracts by HPLC failed to detect the presence of PHB suggesting only very low level expression levels. Subsequent molecular analysis of three lines revealed low levels of correctly processed mRNA from the catalase intron contained within the InPAct cassette and also the presence of cryptic splice sites within the intron. In an attempt to increase expression levels, new InPAct-phb cassettes were generated in which the castorbean catalase intron was replaced with a synthetic intron (syntron). Further, in an attempt to both increase and better control Rep/RepA-mediated activation of InPAct cassettes, Rep/RepA expression was placed under the control of a stably integrated alc switch. Leaf discs from a transgenic tobacco line (Alc ML) containing 35S P-AlcR-AlcA P-Rep/RepA were supertransformed with InPAct-phbAsyn or InPAct-GUSsyn using Agrobacterium and three plants (lines) were regenerated for each construct. Analysis of the RNA processing of the InPAct-phbAsyn cassette revealed highly efficient and correct splicing of the syntron, thus supporting its inclusion within the InPAct system. To determine the efficiency of the alc switch to activate InPAct, leaf material from the three Alc ML + InPAct-phbAsyn lines was either agroinfiltrated with 35S P-Rep/RepA or treated with ethanol. Unexpectedly, episomes were detected not only in the infiltrated and ethanol treated samples, but also in non-treated samples. Subsequent analysis of transgenic Alc ML + InPAct-GUS lines, confirmed that the alc switch was leaky in tissue culture. Although this was shown to be reversible once plants were removed from the tissue culture environment, it made the regeneration of Alc ML + InPAct-phbsyn plant lines extremely difficult, due to unintentional Rep expression and therefore high levels of phb expression and phytotoxic PHB production. Two Alc ML + InPAct-phbAsyn + p1300-TaBV P-phbB/phbC-35S T transgenic lines were able to be regenerated, and these were acclimatised, alcohol-treated and analysed. Although episome formation was detected as late as 21 days post activation, no PHB was detected in the leaves of any plants using either microscopy or HPLC, suggesting the presence of a corrupt InPAct-phbA cassette in both lines. The final component of this thesis involved the application of both the alc switch and the InPAct systems to sugarcane in an attempt to produce PHB. Initial experiments using transgenic Alc ML + InPAct-GUS lines indicated that the alc system was not functional in sugarcane under the conditions tested. The functionality of the InPAct system, independent of the alc gene switch, was subsequently examined by bombarding the 35S Rep/RepA cassette into leaf and immature leaf whorl cells derived from InPAct-GUS transgenic sugarcane plants. No GUS expression was observed in leaf tissue, whereas weak and irregular GUS expression was observed in immature leaf whorl tissue derived from two InPAct- GUS lines and two InPAct-GUS + 35S P-AlcR-AlcA P-GUS lines. The most plausible reason to explain the inconsistent and low levels of GUS expression in leaf whorls is a combination of low numbers of sugarcane cells in the DNA replication-conducive S-phase and the irregular and random nature of sugarcane cells bombarded with Rep/RepA. This study details the first report to develop a TbYDV-based InPAct system under control of the alc switch to produce PHB in tobacco and sugarcane. Despite the inability to detect quantifiable levels of PHB levels in either tobacco or sugarcane, the findings of this study should nevertheless assist in the further development of both the InPAct system and the alc system, particularly for sugarcane and ultimately lead to an ethanol-inducible InPAct gene expression system for the production of bioplastics and other proteins of commercial value in plants.
Resumo:
Vitamin A deficiency (VAD) is a serious problem in developing countries, affecting approximately 127 million children of preschool age and 7.2 million pregnant women each year. However, this deficiency is readily treated and prevented through adequate nutrition. This can potentially be achieved through genetically engineered biofortification of staple food crops to enhance provitamin A (pVA) carotenoid content. Bananas are the fourth most important food crop with an annual production of 100 million tonnes and are widely consumed in areas affected by VAD. However, the fruit pVA content of most widely consumed banana cultivars is low (~ 0.2 to 0.5 ìg/g dry weight). This includes cultivars such as the East African highland banana (EAHB), the staple crop in countries such as Uganda, where annual banana consumption is approximately 250 kg per person. This fact, in addition to the agronomic properties of staple banana cultivars such as vegetative reproduction and continuous cropping, make bananas an ideal target for pVA enhancement through genetic engineering. Interestingly, there are banana varieties known with high fruit pVA content (up to 27.8 ìg/g dry weight), although they are not widely consumed due to factors such as cultural preference and availability. The genes involved in carotenoid accumulation during banana fruit ripening have not been well studied and an understanding of the molecular basis for the differential capacity of bananas to accumulate carotenoids may impact on the effective production of genetically engineered high pVA bananas. The production of phytoene by the enzyme phytoene synthase (PSY) has been shown to be an important rate limiting determinant of pVA accumulation in crop systems such as maize and rice. Manipulation of this gene in rice has been used successfully to produce Golden Rice, which exhibits higher seed endosperm pVA levels than wild type plants. Therefore, it was hypothesised that differences between high and low pVA accumulating bananas could be due either to differences in PSY enzyme activity or factors regulating the expression of the psy gene. Therefore, the aim of this thesis was to investigate the role of PSY in accumulation of pVA in banana fruit of representative high (Asupina) and low (Cavendish) pVA banana cultivars by comparing the nucleic acid and encoded amino acid sequences of the banana psy genes, in vivo enzyme activity of PSY in rice callus and expression of PSY through analysis of promoter activity and mRNA levels. Initially, partial sequences of the psy coding region from five banana cultivars were obtained using reverse transcriptase (RT)-PCR with degenerate primers designed to conserved amino acids in the coding region of available psy sequences from other plants. Based on phylogenetic analysis and comparison to maize psy sequences, it was found that in banana, psy occurs as a gene family of at least three members (psy1, psy2a and psy2b). Subsequent analysis of the complete coding regions of these genes from Asupina and Cavendish suggested that they were all capable of producing functional proteins due to high conservation in the catalytic domain. However, inability to obtain the complete mRNA sequences of Cavendish psy2a, and isolation of two non-functional Cavendish psy2a coding region variants, suggested that psy2a expression may be impaired in Cavendish. Sequence analysis indicated that these Cavendish psy2a coding region variants may have resulted from alternate splicing. Evidence of alternate splicing was also observed in one Asupina psy1 coding region variant, which was predicted to produce a functional PSY1 isoform. The complete mRNA sequence of the psy2b coding regions could not be isolated from either cultivar. Interestingly, psy1 was cloned predominantly from leaf while psy2 was obtained preferentially from fruit, suggesting some level of tissue-specific expression. The Asupina and Cavendish psy1 and psy2a coding regions were subsequently expressed in rice callus and the activity of the enzymes compared in vivo through visual observation and quantitative measurement of carotenoid accumulation. The maize B73 psy1 coding region was included as a positive control. After several weeks on selection, regenerating calli showed a range of colours from white to dark orange representing various levels of carotenoid accumulation. These results confirmed that the banana psy coding regions were all capable of producing functional enzymes. No statistically significant differences in levels of activity were observed between banana PSYs, suggesting that differences in PSY activity were not responsible for differences in the fruit pVA content of Asupina and Cavendish. The psy1 and psy2a promoter sequences were isolated from Asupina and Cavendish gDNA using a PCR-based genome walking strategy. Interestingly, three Cavendish psy2a promoter clones of different sizes, representing possible allelic variants, were identified while only single promoter sequences were obtained for the other Asupina and Cavendish psy genes. Bioinformatic analysis of these sequences identified motifs that were previously characterised in the Arabidopsis psy promoter. Notably, an ATCTA motif associated with basal expression in Arabidopsis was identified in all promoters with the exception of two of the Cavendish psy2a promoter clones (Cpsy2apr2 and Cpsy2apr3). G1 and G2 motifs, linked to light-regulated responses in Arabidopsis, appeared to be differentially distributed between psy1 and psy2a promoters. In the untranscribed regulatory regions, the G1 motifs were found only in psy1 promoters, while the G2 motifs were found only in psy2a. Interestingly, both ATCTA and G2 motifs were identified in the 5’ UTRs of Asupina and Cavendish psy1. Consistent with other monocot promoters, introns were present in the Asupina and Cavendish psy1 5’ UTRs, while none were observed in the psy2a 5’ UTRs. Promoters were cloned into expression constructs, driving the â-glucuronidase (GUS) reporter gene. Transient expression of the Asupina and Cavendish psy1 and psy2a promoters in both Cavendish embryogenic cells and Cavendish fruit demonstrated that all promoters were active, except Cpsy2apr2 and Cpsy2apr3. The functional Cavendish psy2a promoter (Cpsy2apr1) appeared to have activity similar to the Asupina psy2a promoter. The activities of the Asupina and Cavendish psy1 promoters were similar to each other, and comparable to those of the functional psy2a promoters. Semi-quantitative PCR analysis of Asupina and Cavendish psy1 and psy2a transcripts showed that psy2a levels were high in green fruit and decreased during ripening, reinforcing the hypothesis that fruit pVA levels were largely dependent on levels of psy2a expression. Additionally, semi-quantitative PCR using intron-spanning primers indicated that high levels of unprocessed psy2a and psy2b mRNA were present in the ripe fruit of Cavendish but not in Asupina. This raised the possibility that differences in intron processing may influence pVA accumulation in Asupina and Cavendish. In this study the role of PSY in banana pVA accumulation was analysed at a number of different levels. Both mRNA accumulation and promoter activity of psy genes studied were very similar between Asupina and Cavendish. However, in several experiments there was evidence of cryptic or alternate splicing that differed in Cavendish compared to Asupina, although these differences were not conclusively linked to the differences in fruit pVA accumulation between Asupina and Cavendish. Therefore, other carotenoid biosynthetic genes or regulatory mechanisms may be involved in determining pVA levels in these cultivars. This study has contributed to an increased understanding of the role of PSY in the production of pVA carotenoids in banana fruit, corroborating the importance of this enzyme in regulating carotenoid production. Ultimately, this work may serve to inform future research into pVA accumulation in important crop varieties such as the EAHB and the discovery of avenues to improve such crops through genetic modification.
Resumo:
Background Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade. Results Our mitochondrial trees did not return the Metaves clade that had been proposed based on one nuclear intron sequence. We suggest that the high number of indels within the seventh intron of the β-fibrinogen gene at this phylogenetic level, which left a dataset with not a single site across the alignment shared by all taxa, resulted in artifacts during analysis. With respect to the overall avian tree, we find the flamingo and grebe are sister taxa and basal to the shorebirds (Charadriiformes). Using a novel site-stripping technique for noise-reduction we found this relationship to be stable. The hummingbird/swift clade is outside the large and very diverse group of raptors, shore and sea birds. Unexpectedly the kagu is not closely related to the rail in our analysis, but because neither the kagu nor the rail have close affinity to any taxa within this dataset of 41 birds, their placement is not yet resolved. Conclusion Our phylogenetic hypothesis based on 41 avian mitochondrial genomes (13,229 bp) rejects monophyly of seven Metaves species and we therefore conclude that the members of Metaves do not share a common evolutionary history within the Neoaves.
A rep-based hairpin inhibits replication of diverse maize streak virus isolates in a transient assay
Resumo:
Centre for High-Performance Computing, Rosebank, Cape Town, South Africa Maize streak disease, caused by the A strain of the African endemic geminivirus, maize streak mastrevirus (MSV-A), threatens the food security and livelihoods of subsistence farmers throughout sub-Saharan Africa. Using a well-established transient expression assay, this study investigated the potential of a spliceable-intron hairpin RNA (hpRNA) approach to interfere with MSV replication. Two strategies were explored: (i) an inverted repeat of a 662 bp region of the MSV replication-associated protein gene (rep), which is essential for virus replication and is therefore a good target for post-transcriptional gene silencing; and (ii) an inverted repeat of the viral long intergenic region (LIR), considered for its potential to trigger transcriptional silencing of the viral promoter region. After co-bombardment of cultured maize cells with each construct and an infectious partial dimer of the cognate virus genome (MSV-Kom), followed by viral replicativeform-specific PCR, it was clear that, whilst the hairpin rep construct (pHPrepDI662) completely inhibited MSV replication, the LIR hairpin construct was ineffective in this regard. In addition, pHPrepDI662 inhibited or reduced replication of six MSV-A genotypes representing the entire breadth of known MSV-A diversity. Further investigation by real-time PCR revealed that the pHPrepDI662 inverted repeat was 22-fold more effective at reducing virus replication than a construct containing the sense copy, whilst the antisense copy had no effect on replication when compared with the wild type. This is the first indication that an hpRNA strategy targeting MSV rep has the potential to protect transgenic. © 2011 SGM.
Resumo:
Ghrelin is a multifunctional hormone, with roles in stimulating appetite and regulating energy balance, insulin secretion and glucose homeostasis. The ghrelin gene locus (GHRL) is highly complex and gives rise to a range of novel transcripts derived from alternative first exons and internally spliced exons. The wild-type transcript encodes a 117 amino acid preprohormone that is processed to yield the 28 amino acid peptide ghrelin. Here, we identified insulin-responsive transcription corresponding to cryptic exons in intron 2 of the human ghrelin gene. A transcript, termed in2c-ghrelin (intron 2-cryptic), was cloned from the testis and the LNCaP prostate cancer cell line. This transcript may encode an 83 AA preproghrelin isoform that codes for the ghrelin, but not obestatin. It is expressed in a limited number of normal tissues and in tumours of the prostate, testis, breast and ovary. Finally, we confirmed that in2c-ghrelin transcript expression, as well as the recently described in1-ghrelin transcript, is significantly upregulated by insulin in cultured prostate cancer cells. Metabolic syndrome and hyperinsulinaemia has been associated with prostate cancer risk and progression. This may be particularly significant after androgen deprivation therapy for prostate cancer, which induces hyperinsulinaemia, and this could contribute to castrate resistant prostate cancer growth. We have previously demonstrated that ghrelin stimulates prostate cancer cell line proliferation in vitro. This study is the first description of insulin regulation of a ghrelin transcript in cancer, and should provide further impetus for studies into the expression, regulation and function of ghrelin gene products.
Resumo:
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary disease of small vessel caused by mutations in the NOTCH3 gene (NCBI Gene ID: 4854) located on chromosome 19p13.1. NOTCH3 consists of 33 exons which encode a protein of 2321 amino acids. Exons 3 and 4 were found to be mutation hotspots, containing more than 65% of all CADASIL mutations. We performed direct sequencing on an ABI 3130 Genetic Analyser to screen for mutations and polymorphisms on 300 patients who were clinically suspected to have CADASIL. First, exons 3 and 4 were screened in NOTCH3 and if there were no variations found, then extended CADASIL testing (exons 2, 11, 18 and 19) was offered to patients. Here we report two novel non-synonymous mutations identified in the NOTCH3 gene. The first mutation, located in exon 4 was found in a 49-year-old female and causes an alanine to valine amino acid change at position 202 (605C > T). The second mutation, located in exon 11, was found in a 66-year-old female and causes a cysteine to arginine amino acid change at position 579 (1735T > C). We also report a 46-year-old male with a known polymorphism Thr101Thr (rs3815188) and an unreported polymorphism NM_000435.2:c.679+60G>A observed in intron 4 of the NOTCH3 gene. Although Ala202Ala (rs1043994) is a common polymorphism in the NOTCH3 gene, our reported novel mutation (Ala202Val) causes an amino acid change at the same locus. Our other reported mutation (Cys579Arg) correlates well with other known mutations in NOTCH3, as the majority of the CADASIL-associated mutations in NOTCH3 generally occur in the EGF-like (epidermal growth factor-like) repeat domain, causing a change in the number of cysteine residues. The intronic polymorphism NM_000435.2:c.679+60G>A lies close to the intron–exon boundary and may affect the splicing mechanism in the NOTCH3 gene.
Resumo:
Migraine is a neurological disorder that is associated with increased levels of calcitonin gene-related peptide (CGRP) in plasma. CGRP, being one of the mediators of neurogenic inflammation and a phenomenon implicated in the pathogenesis of migraine headache, is thus suggested to have an important role in migraine pathophysiology. Polymorphisms of the CALCA gene have been linked to Parkinson's disease, ovarian cancer and essential hypertension, suggesting a functional role for these polymorphisms. Given the strong evidence linking CGRP and migraine, it is hypothesised that polymorphisms in the CALCA gene may play a role in migraine pathogenesis. Seemingly non functional intronic polymorphisms are capable of disrupting normal RNA processing or introducing a splice site in the transcript. A 16 bp deletion in the first intron of the CALCA gene has been reported to be a good match for the binding site for a transcription factor expressed strongly in neural crest derived cells, AP-2. This deletion also eliminates an intron splicing enhancer (ISE) that may potentially cause exon skipping. This study investigated the role of the 16 bp intronic deletion in the CALCA gene in migraineurs and matched control individuals. Six hundred individuals were genotyped for the deletion by polymerase chain reaction followed by fragment analysis on the 3130 Genetic Analyser. The results of this study showed no significant association between the intronic 16 bp deletion in the CALCA gene and migraine in the tested Australian Caucasian population. However, given the evidence linking CGRP and migraine, further investigation of variants with this gene may be warranted.
Resumo:
Objective: To perform a 1-stage meta-analysis of genome-wide association studies (GWAS) of multiple sclerosis (MS) susceptibility and to explore functional consequences of new susceptibility loci. Methods: We synthesized 7 MS GWAS. Each data set was imputed using HapMap phase II, and a per single nucleotide polymorphism (SNP) meta-analysis was performed across the 7 data sets. We explored RNA expression data using a quantitative trait analysis in peripheral blood mononuclear cells (PBMCs) of 228 subjects with demyelinating disease. Results: We meta-analyzed 2,529,394 unique SNPs in 5,545 cases and 12,153 controls. We identified 3 novel susceptibility alleles: rs170934T at 3p24.1 (odds ratio [OR], 1.17; p ¼ 1.6 � 10�8) near EOMES, rs2150702G in the second intron of MLANA on chromosome 9p24.1 (OR, 1.16; p ¼ 3.3 � 10�8), and rs6718520A in an intergenic region on chromosome 2p21, with THADA as the nearest flanking gene (OR, 1.17; p ¼ 3.4 � 10�8). The 3 new loci do not have a strong cis effect on RNA expression in PBMCs. Ten other susceptibility loci had a suggestive p < 1 � 10�6, some of these loci have evidence of association in other inflammatory diseases (ie, IL12B, TAGAP, PLEK, and ZMIZ1). Interpretation: We have performed a meta-analysis of GWAS in MS that more than doubles the size of previous gene discovery efforts and highlights 3 novel MS susceptibility loci. These and additional loci with suggestive evidence of association are excellent candidates for further investigations to refine and validate their role in the genetic architecture of MS.
Resumo:
Multiple Sclerosis (MS) is a central nervous system (CNS) chronic inflammatory demyelinating disease leading to various neurological disabilities. The disorder is more prevalent for women with a ratio of 3:2 female to male. Objectives: To investigate variation within the estrogen receptor 1 (ESR1) polymorphism gene in an Australian MS case-control population using two intragenic restriction fragment length polymorphisms; the G594A located in exon 8 detected with the BtgI restriction enzyme and T938C located in intron 1, detected with PvuII. One hundred and ten Australian MS patients were studied, with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 110 age, sex and ethnicity matched controls were investigated as a comparative group. No significant difference in the allelic distribution frequency was found between the case and control groups for the ESR1 PvuII (P = 0.50) and Btg1 (P = 0.45) marker. Our results do not support a role for these two ESR1 markers in multiple sclerosis susceptibility, however other markers within ESR1 should not be excluded for potential involvement in the disorder.
Resumo:
The aim of this study was to investigate through direct sequencing the insulin receptor (INSR) gene in DNA samples from a migraine affected family previously showing linkage to chromosome 19p13 in an attempt to detect disease associated mutations. Migraine is a common debilitating disorder with a significant genetic component. At present, the number and type of genes involved in the common forms of migraine are not clear. The INSR gene on chromosome 19p13.3-13.2 is a gene of interest since a number of single nucleotide polymorphisms (SNPs) located within the gene have been implicated in migraine with (MA) and without aura (MO). Six DNA samples obtained from non-founding migraine affected members of migraine family 1 (MF1) were used in this study. Genomic DNA was sequenced for the INSR gene in exons 1-22 and the promoter region. In the six migraine family member samples, previously reported SNPs were detected within two exonic DNA coding regions of the INSR gene. These SNPs, in exons 13 and 17, do not alter the normal INSR polypeptide sequence. In addition, intron 7 also revealed a DNA base sequence variation. For the 5' untranslated promoter region of the gene, no mutations or polymorphisms were detected. In conclusion, this study detected no INSR mutations in affected members of a chromosome 19 linked migraine pedigree. Hence, migraine linkage to this chromosomal region may involve other candidate genes.
Resumo:
Background Several studies have identified rare genetic variations responsible for many cases of familial breast cancer but their contribution to total breast cancer incidence is relatively small. More common genetic variations with low penetrance have been postulated to account for a higher proportion of the population risk of breast cancer. Methods and Results In an effort to identify genes that influence non-familial breast cancer risk, we tested over 25,000 single nucleotide polymorphisms (SNPs) located within approximately 14,000 genes in a large-scale case-control study in 254 German women with breast cancer and 268 age-matched women without malignant disease. We identified a marker on chromosome 14q24.3-q31.1 that was marginally associated with breast cancer status (OR = 1.5, P = 0.07). Genotypes for this SNP were also significantly associated with indicators of breast cancer severity, including presence of lymph node metastases ( P = 0.006) and earlier age of onset ( P = 0.01). The association with breast cancer status was replicated in two independent samples (OR = 1.35, P = 0.05). High-density association fine mapping showed that the association spanned about 80 kb of the zinc-finger gene DPF3 (also known as CERD4 ). One SNP in intron 1 was found to be more strongly associated with breast cancer status in all three sample collections (OR = 1.6, P = 0.003) as well as with increased lymph node metastases ( P = 0.01) and tumor size ( P = 0.01). Conclusion Polymorphisms in the 5' region of DPF3 were associated with increased risk of breast cancer development, lymph node metastases, age of onset, and tumor size in women of European ancestry. This large-scale association study suggests that genetic variation in DPF3 contributes to breast cancer susceptibility and severity.
Resumo:
A series of improved vectors have been constructed that are suitable for use in Agrobacterium tumefaciens-mediated monocot transformation. These binary vectors have several useful features, including the selectable marker genes bar (phosphinothricin resistance) or hph (hygromycin resistance) driven by either the cauliflower mosaic virus (CaMV) 35S promoter or the maize ubiquitin promoter, a high-copy-number replication origin that allows reliable mini-prep DNA isolation from Escherichia coli, and a polylinker sequence into which target genes can be easily inserted. A significant improvement has been made to the hph gene by the introduction of an intron into its coding region. The presence of the intron abolishes hph expression in A. tumefaciens, rendering the bacterium susceptible to the selective agent hygromycin B. The use of such an intron-hph vector thus enables the antibiotic in plant culture media to function as both a selective agent for transformed tissue and as a contraselective agent for A. tumefaciens growth, thus minimising the overgrowth of A. tumefaciens on plant tissues during transformation. Furthermore, the intron appears to be correctly spliced in plant cells and significantly enhances hph expression in transformed rice tissue. In our experiments, the use of the intron-hph vector increased the frequency of rice transformation and has enabled the production of transgenic barley.
Resumo:
A suite of plant expression vectors (pPLEX), constructed from the gene regulation signals from subterranean clover stunt virus (SCSV) genome, has previously been used in dicot transformation for a variety of applications in plant biotechnology. To assess their use for the transformation of monocots, a number of modifications were made to the basic vector series and assessed in rice. In their unmodified forms, the SCSV promoters directed low levels of gene expression, however, insertion of an intron between the promoter and the transgene open reading frame (analogous to the rice actin and maize ubiquitin promoter systems) increased transgene expression 50-fold. The expression patterns from the intron-modified SCSV (segments 4 and 7) promoters were very similar to those directed by the actin or ubiquitin promoters. All promoter systems investigated directed expression that appeared to be constitutive within leaf tissue, and localised to the epidermal and vascular tissues of the root. The pPLEX vectors described here are an important counterpart to the dicot pPLEX series and have the potential to be useful in monocot research and biotechnology.
Resumo:
Post-transcriptional silencing of plant genes using anti-sense or co-suppression constructs usually results in only a modest proportion of silenced individuals. Recent work has demonstrated the potential for constructs encoding self-complementary 'hairpin' RNA (hpRNA) to efficiently silence genes. In this study we examine design rules for efficient gene silencing, in terms of both the proportion of independent transgenic plants showing silencing, and the degree of silencing. Using hpRNA constructs containing sense/anti-sense arms ranging from 98 to 853 nt gave efficient silencing in a wide range of plant species, and inclusion of an intron in these constructs had a consistently enhancing effect. Intron-containing constructs (ihpRNA) generally gave 90-100% of independent transgenic plants showing silencing. The degree of silencing with these constructs was much greater than that obtained using either co-suppression or anti-sense constructs. We have made a generic vector, pHANNIBAL, that allows a simple, single PCR product from a gene of interest to be easily converted into a highly effective ihpRNA silencing construct. We have also created a high-throughput vector, pHELLSGATE, that should facilitate the cloning of gene libraries or large numbers of defined genes, such as those in EST collections, using an in vitro recombinase system. This system may facilitate the large-scale determination and discovery of plant gene functions in the same way as RNAi is being used to examine gene function in Caenorhabditis elegans.