1000 resultados para transverse vibration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dual-mode vibration of nanowires has been reported experimentally through actuation of the nanowire at its resonance frequency, which is expected to open up a variety of new modalities for the NEMS that could operate in the nonlinear regime. In the present work, we utilize large scale molecular dynamics simulations to investigate the dual-mode vibration of <110> Ag nanowires with triangular, rhombic and truncated rhombic cross-sections. By incorporating the generalized Young-Laplace equation into Euler-Bernoulli beam theory, the influence of surface effects on the dual-mode vibration is studied. Due to the different lattice spacing in principal axes of inertia of the {110} atomic layers, the NW is also modeled as a discrete system to reveal the influence from such specific atomic arrangement. It is found that the <110> Ag NW will under a dual-mode vibration if the actuation direction is deviated from the two principal axes of inertia. The predictions of the two first mode natural frequencies by the classical beam model appear underestimated comparing with the MD results, which are found to be enhanced by the discrete model. Particularly, the predictions by the beam theory with the contribution of surface effects are uniformly larger than the classical beam model, which exhibit better agreement with MD results for larger cross-sectional size. However, for ultrathin NWs, current consideration of surface effects is still experiencing certain inaccuracy. In all, for all different cross-sections, the inclusion of surface effects is found to reduce the difference between the two first mode natural frequencies. This trend is observed consistent with MD results. This study provides a first comprehensive investigation on the dual-mode vibration of <110> oriented Ag NWs, which is supposed to benefit the applications of NWs that acting as a resonating beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops and applies a multi-criteria procedure, incorporating changes in natural frequencies, modal flexibility and the modal strain energy, for damage detection in slab-on-girder bridges. The proposed procedure is first validated through experimental testing of a model bridge. Numerically simulated modal data obtained through finite element analyses are then used to evaluate the vibration parameters before and after damage and used as the indices for assessment of the state of structural health. The procedure is illustrated by its application to full scale slab-on-girder bridges under different damage scenarios involving single and multiple damages on the deck and girders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The only effective method of Fiber Bragg Grating (FBG) strain modulation has been by changing the distance between its two fixed ends. We demonstrate an alternative being more sensitive to force based on the nonlinear amplification relationship between a transverse force applied to a stretched string and its induced axial force. It may improve the sensitivity and size of an FBG force sensor, reduce the number of FBGs needed for multi-axial force monitoring, and control the resonant frequency of an FBG accelerometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage assessment (damage detection, localization and quantification) in structures and appropriate retrofitting will enable the safe and efficient function of the structures. In this context, many Vibration Based Damage Identification Techniques (VBDIT) have emerged with potential for accurate damage assessment. VBDITs have achieved significant research interest in recent years, mainly due to their non-destructive nature and ability to assess inaccessible and invisible damage locations. Damage Index (DI) methods are also vibration based, but they are not based on the structural model. DI methods are fast and inexpensive compared to the model-based methods and have the ability to automate the damage detection process. DI method analyses the change in vibration response of the structure between two states so that the damage can be identified. Extensive research has been carried out to apply the DI method to assess damage in steel structures. Comparatively, there has been very little research interest in the use of DI methods to assess damage in Reinforced Concrete (RC) structures due to the complexity of simulating the predominant damage type, the flexural crack. Flexural cracks in RC beams distribute non- linearly and propagate along all directions. Secondary cracks extend more rapidly along the longitudinal and transverse directions of a RC structure than propagation of existing cracks in the depth direction due to stress distribution caused by the tensile reinforcement. Simplified damage simulation techniques (such as reductions in the modulus or section depth or use of rotational spring elements) that have been extensively used with research on steel structures, cannot be applied to simulate flexural cracks in RC elements. This highlights a big gap in knowledge and as a consequence VBDITs have not been successfully applied to damage assessment in RC structures. This research will address the above gap in knowledge and will develop and apply a modal strain energy based DI method to assess damage in RC flexural members. Firstly, this research evaluated different damage simulation techniques and recommended an appropriate technique to simulate the post cracking behaviour of RC structures. The ABAQUS finite element package was used throughout the study with properly validated material models. The damaged plasticity model was recommended as the method which can correctly simulate the post cracking behaviour of RC structures and was used in the rest of this study. Four different forms of Modal Strain Energy based Damage Indices (MSEDIs) were proposed to improve the damage assessment capability by minimising the numbers and intensities of false alarms. The developed MSEDIs were then used to automate the damage detection process by incorporating programmable algorithms. The developed algorithms have the ability to identify common issues associated with the vibration properties such as mode shifting and phase change. To minimise the effect of noise on the DI calculation process, this research proposed a sequential order of curve fitting technique. Finally, a statistical based damage assessment scheme was proposed to enhance the reliability of the damage assessment results. The proposed techniques were applied to locate damage in RC beams and slabs on girder bridge model to demonstrate their accuracy and efficiency. The outcomes of this research will make a significant contribution to the technical knowledge of VBDIT and will enhance the accuracy of damage assessment in RC structures. The application of the research findings to RC flexural members will enable their safe and efficient performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To evaluate the time course of the recovery of transverse strain in the Achilles and patellar tendon following a bout of resistance exercise. Methods Seventeen healthy adults underwent sonographic examination of the right patellar (n=9) and Achilles (n=8) tendons immediately prior to and following 90 repetitions of weight-bearing quadriceps and gastrocnemius-resistance exercise performed against an effective resistance of 175% and 250% body weight, respectively. Sagittal tendon thickness was determined 20 mm from the enthesis and transverse strain, as defined by the stretch ratio, was repeatedly monitored over a 24 h recovery period. Results Resistance exercise resulted in an immediate decrease in Achilles (t7=10.6, p<0.01) and patellar (t8=8.9, p<0.01) tendon thickness, resulting in an average transverse stretch ratio of 0.86±0.04 and 0.82±0.05, which was not significantly different between tendons. The magnitude of the immediate transverse strain response, however, was reduced with advancing age (r=0.63, p<0.01). Recovery in transverse strain was prolonged compared with the duration of loading and exponential in nature. The average primary recovery time was not significantly different between the Achilles (6.5±3.2 h) and patellar (7.1±3.2 h) tendons. Body weight accounted for 62% and 64% of the variation in recovery time, respectively. Conclusions Despite structural and biochemical differences between the Achilles and patellar tendon, the mechanisms underlying transverse creep recovery in vivo appear similar and are highly time dependent. These novel findings have important implications concerning the time required for the mechanical recovery of high-stress tendons following an acute bout of exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The human patellar tendon is highly adaptive to changes in habitual loading but little is known about its acute mechanical response to exercise. This research evaluated the immediate transverse strain response of the patellar tendon to a bout of resistive quadriceps exercise. Methods: Twelve healthy adult males (mean age 34.0+/-12.1 years, height 1.75+/-0.09 m and weight 76.7+/-12.3 kg) free of knee pain participated in the research. A 10-5 MHz linear-array transducer was used to acquire standardised sagittal sonograms of the right patellar tendon immediately prior to and following 90 repetitions of a double-leg parallel-squat exercise performed against a resistance of 175% bodyweight. Tendon thickness was determined 20-mm distal to the pole of the patellar and transverse Hencky strain was calculated as the natural log of the ratio of post- to pre-exercise tendon thickness and expressed as a percentage. Measures of tendon echotexture (echogenicity and entropy) were also calculated from subsequent gray-scale profiles. Results: Quadriceps exercise resulted in an immediate decrease in patellar tendon thickness (P<.05), equating to a transverse strain of -22.5+/-3.4%, and was accompanied by increased tendon echogenicity (P<.05) and decreased entropy (P<.05). The transverse strain response of the patellar tendon was significantly correlated with both tendon echogenicity (r = -0.58, P<.05) and entropy following exercise (r=0.73, P<.05), while older age was associated with greater entropy of the patellar tendon prior to exercise (r=0.79, P<.05) and a reduced transverse strain response (r=0.61, P<.05) following exercise. Conclusions: This study is the first to show that quadriceps exercise invokes structural alignment and fluid movement within the matrix that are manifest by changes in echotexture and transverse strain in the patellar tendon., (C)2012The American College of Sports Medicine

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research evaluated the effect of obesity on the acute cumulative transverse strain of the Achilles tendon in response to exercise. Twenty healthy adult males were categorized into ‘low normal-weight’ (BMI <23 kg m−2) and ‘overweight’ (BMI >27.5 kg m−2) groups based on intermediate cut-off points recommended by the World Health Organization. Longitudinal sonograms of the right Achilles tendon were acquired immediately prior and following weight-bearing ankle exercises. Achilles tendon thickness was measured 20-mm proximal to the calcaneal insertion and transverse tendon strain was calculated as the natural log of the ratio of post- to pre-exercise tendon thickness. The Achilles tendon was thicker in the overweight group both prior to (t18 = −2.91, P = 0.009) and following (t18 = −4.87, P < 0.001) exercise. The acute transverse strain response of the Achilles tendon in the overweight group (−10.7 ± 2.5%), however, was almost half that of the ‘low normal-weight’ (−19.5 ± 7.4%) group (t18 = −3.56, P = 0.004). These findings suggest that obesity is associated with structural changes in tendon that impairs intra-tendinous fluid movement in response to load and provides new insights into the link between tendon pathology and overweight and obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first fiber Bragg grating (FBG) accelerometer using direct transverse forces is demonstrated by fixing the FBG by its two ends and placing a transversely moving inertial object at its middle. It is very sensitive because a lightly stretched FBG is more sensitive to transverse forces than axial forces. Its resonant frequency and static sensitivity are analyzed by the classic spring-mass theory, assuming the axial force changes little. The experiments show that the theory can be modified for cases where the assumption does not hold. The resonant frequency can be modified by a linear relationship experimentally achieved, and the static sensitivity by an alternative method proposed. The principles of the over-range protection and low cross axial sensitivity are achieved by limiting the movement of the FBG and were validated experimentally. The sensitivities 1.333 and 0.634 nm/g were experimentally achieved by 5.29 and 2.83 gram inertial objects at 10 Hz from 0.1 to 0.4 g (g = 9.8 m/s 2), respectively, and their resonant frequencies were around 25 Hz. Their theoretical static sensitivities and resonant frequencies found by the modifications are 1.188 nm/g and 26.81 Hz for the 5.29 gram one and 0.784 nm/g and 29.04 Hz for the 2.83 gram one, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crest-fixed steel claddings made of thin, high strength steel often suffer from local pull-through failures at their screw connections during high wind events such as storms and hurricanes. Currently there aren't any adequate design provisions for these cladding systems except for the expensive testing provisions. Since the local pull-through failures in the less ductile steel claddings are initiated by transverse splitting at the fastener hole, analytical studies have not been able to determine the pull-through failure loads. Analytical studies could be used if a reliable splitting criterion is available. Therefore a series of two-span cladding tests was conducted on a range of crest-fixed steel cladding systems under simulated wind uplift loads. The strains in the sheeting around the critical fastener holes were measured until the pull-through failure. This paper presents the details of the experimental investigation and the results including a strain criterion for the local pull-through failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. This study evaluated the time course of recovery of transverse strain in the Achilles and patellar tendons following a bout of resistance exercise. Methods. Seventeen healthy adults underwent sonographic examination of the right patellar (n = 9) or Achilles (n = 8) tendons immediately prior to and following 90 repetitions of weight–bearing exercise. Quadriceps and gastrocnemius exercise were performed against an effective resistance of 175% and 250% body weight, respectively. Sagittal tendon thickness was determined 20 mm from the tendon enthesis and transverse strain was repeatedly monitored over a 24 hour recovery period. Results. Resistance exercise resulted in an immediate decrease in Achilles (t7 = 10.6, P<.01) and patellar (t8 = 8.9, P<.01) tendon thickness, resulting in an average transverse strain of 0.14 ± 0.04 and 0.18 ± 0.05. While the average strain was not significantly different between tendons, older age was associated with a reduced transverse strain response (r=0.63, P<.01). Recovery of transverse strain, in contrast, was prolonged compared with the duration of loading and exponential in nature. The mean primary recovery time was not significantly different between Achilles (6.5 ± 3.2 hours) and patellar (7.1 ± 3.2 hours) tendons and body weight accounted for 62% and 64% of the variation in recovery time, respectively. Discussion. Despite structural and biochemical differences between the Achilles and patellar tendons [1], the mechanisms underlying transverse creep–recovery in vivo appear similar and are highly time dependent. Primary recovery required about 7 hours in healthy tendons, with full recovery requiring up to 24 hours. These in vivo recovery times are similar to those reported for axial creep recovery of the vertebral disc in vitro [2], and may be used clinically to guide physical activity to rest ratios in healthy adults. Optimal ratios for high–stress tendons in clinical populations, however, remain unknown and require further attention in light of the knowledge gained in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclostationary models for the diagnostic signals measured on faulty rotating machineries have proved to be successful in many laboratory tests and industrial applications. The squared envelope spectrum has been pointed out as the most efficient indicator for the assessment of second order cyclostationary symptoms of damages, which are typical, for instance, of rolling element bearing faults. In an attempt to foster the spread of rotating machinery diagnostics, the current trend in the field is to reach higher levels of automation of the condition monitoring systems. For this purpose, statistical tests for the presence of cyclostationarity have been proposed during the last years. The statistical thresholds proposed in the past for the identification of cyclostationary components have been obtained under the hypothesis of having a white noise signal when the component is healthy. This need, coupled with the non-white nature of the real signals implies the necessity of pre-whitening or filtering the signal in optimal narrow-bands, increasing the complexity of the algorithm and the risk of losing diagnostic information or introducing biases on the result. In this paper, the authors introduce an original analytical derivation of the statistical tests for cyclostationarity in the squared envelope spectrum, dropping the hypothesis of white noise from the beginning. The effect of first order and second order cyclostationary components on the distribution of the squared envelope spectrum will be quantified and the effectiveness of the newly proposed threshold verified, providing a sound theoretical basis and a practical starting point for efficient automated diagnostics of machine components such as rolling element bearings. The analytical results will be verified by means of numerical simulations and by using experimental vibration data of rolling element bearings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diagnostics of mechanical components operating in transient conditions is still an open issue, in both research and industrial field. Indeed, the signal processing techniques developed to analyse stationary data are not applicable or are affected by a loss of effectiveness when applied to signal acquired in transient conditions. In this paper, a suitable and original signal processing tool (named EEMED), which can be used for mechanical component diagnostics in whatever operating condition and noise level, is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED) and the analytical approach of the Hilbert transform. The proposed tool is able to supply diagnostic information on the basis of experimental vibrations measured in transient conditions. The tool has been originally developed in order to detect localized faults on bearings installed in high speed train traction equipments and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on spectral kurtosis or envelope analysis, which represent until now the landmark for bearings diagnostics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cable structures find many applications such as in power transmission, in anchors and especially in bridges. They serve as major load bearing elements in suspension bridges, which are capable of spanning long distances. All bridges, including suspension bridges, are designed to have long service lives. However, during this long life, they become vulnerable to damage due to changes in loadings, deterioration with age and random action such as impacts. The main cables are more vulnerable to corrosion and fatigue, compared to the other bridge components, and consequently reduces the serviceability and ultimate capacity of the bridge. Detecting and locating such damage at the earliest stage is challenging in the current structural health monitoring (SHM) systems of long span suspension bridges. Damage or deterioration of a structure alters its stiffness, mass and damping properties which in turn modify its vibration characteristics. This phenomenon can therefore be used to detect damage in a structure. The modal flexibility, which depends on the vibration characteristics of a structure, has been identified as a successful damage indicator in beam and plate elements, trusses and simple structures in reinforced concrete and steel. Successful application of the modal flexibility phenomenon to detect and locate the damage in suspension bridge main cables has received limited attention in recent research work. This paper, therefore examines the potential of the modal flexibility based Damage Index (DI) for detecting and locating damage in the main cable of a suspension bridge under four different damage scenarios. Towards this end, a numerical model of a suspension bridge cable was developed to extract the modal parameters at both damaged and undamaged states. Damage scenarios considered in this study with varied location and severity were simulated by changing stiffness at particular locations of the cable model. Results confirm that the DI has the potential to successfully detect and locate damage in suspension bridge main cables. This simple method can therefore enable bridge engineers and managers to detect and locate damage in suspension bridges at an early stage, minimize expensive retrofitting and prevent bridge collapse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In presented method combination of Fourier and Time domain detection enables to broaden the effective bandwidth for time dependent Doppler Signal that allows for using higher-order Bessel functions to calculate unambiguously the vibration amplitudes.