943 resultados para transit system performance
Resumo:
We present a practical implementation of a solar thermophotovoltaic (TPV) system. The system presented in this paper comprises a sunlight concentrator system, a cylindrical cup-shaped absorber/emitter (made of tungsten coated with HfO2), and an hexagonal-shaped water-cooled TPV generator comprising 24 germanium TPV cells, which is surrounding the cylindrical absorber/emitter. This paper focuses on the development of shingled TPV cell arrays, the characterization of the sunlight concentrator system, the estimation of the temperature achieved by the cylindrical emitters operated under concentrated sunlight, and the evaluation of the full system performance under real outdoor irradiance conditions. From the system characterization, we have measured short-circuit current densities up to 0.95 A/cm2, electric power densities of 67 mW/cm2, and a global conversion efficiency of about 0.8%. To our knowledge, this is the first overall solar-to-electricity efficiency reported for a complete solar thermophotovoltaic system. The very low efficiency is mainly due to the overheating of the cells (up to 120 °C) and to the high optical concentrator losses, which prevent the achievement of the optimum emitter temperature. The loss analysis shows that by improving both aspects, efficiencies above 5% could be achievable in the very short term and efficiencies above 10% could be achieved with further improvements.
Resumo:
In this paper the main challenges associated with the migration process towards LTE, will be assessed. These challenges comprise, among others, the next key topics: Reliability, Availability Maintainability and Safety (RAMS) requirements, end to end Quality of Service (QoS) requirements, system performance in high speed scenarios, communication system deployment strategy, and system backward compatibility as well as the future system features for delivering railway services. The practical evaluation of the LTE system capabilities and performance in High Speed Railway (HSR) scenarios, require the development of an LTE demonstrator and an LTE system level simulator. Under this scope, the authors have developed an RF LTE demonstrator, as well as an LTE system level simulator, that will provide valuable information for the assessing of LTE performance and suitability in real HSR scenarios. This work is being developed under the framework of a research project to evaluate the feasibility of LTE to become the new railway communication system. The companies and universities involved in this project are: Technical University of Madrid (UPM), Alcatel Lucent Spain, ADIF (Spanish Railway Infrastructure Manager), Metro de Madrid, AT4 Wireless, the University of A Coruña (UDC) and University of Málaga (UMA).
Resumo:
People in industrial societies carry more and more portable electronic devices (e.g., smartphone or console) with some kind of wireles connectivity support. Interaction with auto-discovered target devices present in the environment (e.g., the air conditioning of a hotel) is not so easy since devices may provide inaccessible user interfaces (e.g., in a foreign language that the user cannot understand). Scalability for multiple concurrent users and response times are still problems in this domain. In this paper, we assess an interoperable architecture, which enables interaction between people with some kind of special need and their environment. The assessment, based on performance patterns and antipatterns, tries to detect performance issues and also tries to enhance the architecture design for improving system performance. As a result of the assessment, the initial design changed substantially. We refactorized the design according to the Fast Path pattern and The Ramp antipattern. Moreover, resources were correctly allocated. Finally, the required response time was fulfilled in all system scenarios. For a specific scenario, response time was reduced from 60 seconds to less than 6 seconds.
Resumo:
The present is marked by the availability of large volumes of heterogeneous data, whose management is extremely complex. While the treatment of factual data has been widely studied, the processing of subjective information still poses important challenges. This is especially true in tasks that combine Opinion Analysis with other challenges, such as the ones related to Question Answering. In this paper, we describe the different approaches we employed in the NTCIR 8 MOAT monolingual English (opinionatedness, relevance, answerness and polarity) and cross-lingual English-Chinese tasks, implemented in our OpAL system. The results obtained when using different settings of the system, as well as the error analysis performed after the competition, offered us some clear insights on the best combination of techniques, that balance between precision and recall. Contrary to our initial intuitions, we have also seen that the inclusion of specialized Natural Language Processing tools dealing with Temporality or Anaphora Resolution lowers the system performance, while the use of topic detection techniques using faceted search with Wikipedia and Latent Semantic Analysis leads to satisfactory system performance, both for the monolingual setting, as well as in a multilingual one.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Central nervous system performance is disrupted by pain and by the threat of pain. It is not known whether disruption caused by the threat of pain is dependent on the likelihood of pain occurring. We hypothesised that when a painful stimulus is possible but unpredictable central nervous system performance is reduced, but when the pain is predictable and unavoidable it is not. Sixteen healthy subjects performed a reaction time task during predictable and unpredictable conditions (100% and 50% probability of pain, respectively). Group data showed increased reaction time with the threat of pain by 50 ms (95% Cl 16 to 83 ms) for the predictable condition and 46 ms (95% CI 12 to 80 ms) for the unpredictable condition (p < 0.01 for both), but there was no difference between predictable and unpredictable conditions (p = 0.41). However, individual data showed that there was a differential effect in 75% of subjects (p < 0.05 for all) and that there was a greater effect of predictable pain for some subjects and a greater effect of unpredictable pain for others. Reaction time was related to reported anxiety (r = 0.49, p = 0.02 for both conditions). The predictability of a painful stimulus may have a differential effect on central nervous system performance within individuals, but anxiety about the impending pain appears to be important in determining this effect.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The development of an information system in Caribbean public sector organisations is usually seen as a matter of installing hardware and software according to a directive from senior management, without much planning. This causes huge investment in procuring hardware and software without improving overall system performance. Increasingly, Caribbean organisations are looking for assurances on information system performance before making investment decisions not only to satisfy the funding agencies, but also to be competitive in this dynamic and global business world. This study demonstrates an information system planning approach using a process-reengineering framework. Firstly, the stakeholders for the business functions are identified along with their relationships and requirements. Secondly, process reengineering is carried out to develop the system requirements. Accordingly, information technology is selected through detailed system requirement analysis. Thirdly, cost-benefit analysis, identification of critical success factors and risk analysis are carried out to strengthen the selection. The entire methodology has been demonstrated through an information system project in the Barbados drug service, a public sector organisation in the Caribbean.
Resumo:
To investigate the technical feasibility of a novel cooling system for commercial greenhouses, knowledge of the state of the art in greenhouse cooling is required. An extensive literature review was carried out that highlighted the physical processes of greenhouse cooling and showed the limitations of the conventional technology. The proposed cooling system utilises liquid desiccant technology; hence knowledge of liquid desiccant cooling is also a prerequisite before designing such a system. Extensive literature reviews on solar liquid desiccant regenerators and desiccators, which are essential parts of liquid desiccant cooling systems, were carried out to identify their advantages and disadvantages. In response to the findings, a regenerator and a desiccator were designed and constructed in lab. An important factor of liquid desiccant cooling is the choice of liquid desiccant itself. The hygroscopicity of the liquid desiccant affects the performance of the system. Bitterns, which are magnesium-rich brines derived from seawater, are proposed as an alternative liquid desiccant for cooling greenhouses. A thorough experimental and theoretical study was carried out in order to determine the properties of concentrated bitterns. It was concluded that their properties resemble pure magnesium chloride solutions. Therefore, magnesium chloride solution was used in laboratory experiments to assess the performance of the regenerator and the desiccator. To predict the whole system performance, the physical processes of heat and mass transfer were modelled using gPROMS® advanced process modelling software. The model was validated against the experimental results. Consequently it was used to model a commercials-scale greenhouse in several hot coastal areas in the tropics and sub-tropics. These case studies show that the system, when compared to evaporative cooling, achieves 3oC-5.6oC temperature drop inside the greenhouse in hot and humid places (RH>70%) and 2oC-4oC temperature drop in hot and dry places (50%
Resumo:
Respiration is a complex activity. If the relationship between all neurological and skeletomuscular interactions was perfectly understood, an accurate dynamic model of the respiratory system could be developed and the interaction between different inputs and outputs could be investigated in a straightforward fashion. Unfortunately, this is not the case and does not appear to be viable at this time. In addition, the provision of appropriate sensor signals for such a model would be a considerable invasive task. Useful quantitative information with respect to respiratory performance can be gained from non-invasive monitoring of chest and abdomen motion. Currently available devices are not well suited in application for spirometric measurement for ambulatory monitoring. A sensor matrix measurement technique is investigated to identify suitable sensing elements with which to base an upper body surface measurement device that monitors respiration. This thesis is divided into two main areas of investigation; model based and geometrical based surface plethysmography. In the first instance, chapter 2 deals with an array of tactile sensors that are used as progression of existing and previously investigated volumetric measurement schemes based on models of respiration. Chapter 3 details a non-model based geometrical approach to surface (and hence volumetric) profile measurement. Later sections of the thesis concentrate upon the development of a functioning prototype sensor array. To broaden the application area the study has been conducted as it would be fore a generically configured sensor array. In experimental form the system performance on group estimation compares favourably with existing system on volumetric performance. In addition provides continuous transient measurement of respiratory motion within an acceptable accuracy using approximately 20 sensing elements. Because of the potential size and complexity of the system it is possible to deploy it as a fully mobile ambulatory monitoring device, which may be used outside of the laboratory. It provides a means by which to isolate coupled physiological functions and thus allows individual contributions to be analysed separately. Thus facilitating greater understanding of respiratory physiology and diagnostic capabilities. The outcome of the study is the basis for a three-dimensional surface contour sensing system that is suitable for respiratory function monitoring and has the prospect with future development to be incorporated into a garment based clinical tool.
Resumo:
The computer systems of today are characterised by data and program control that are distributed functionally and geographically across a network. A major issue of concern in this environment is the operating system activity of resource management for different processors in the network. To ensure equity in load distribution and improved system performance, load balancing is often undertaken. The research conducted in this field so far, has been primarily concerned with a small set of algorithms operating on tightly-coupled distributed systems. More recent studies have investigated the performance of such algorithms in loosely-coupled architectures but using a small set of processors. This thesis describes a simulation model developed to study the behaviour and general performance characteristics of a range of dynamic load balancing algorithms. Further, the scalability of these algorithms are discussed and a range of regionalised load balancing algorithms developed. In particular, we examine the impact of network diameter and delay on the performance of such algorithms across a range of system workloads. The results produced seem to suggest that the performance of simple dynamic policies are scalable but lack the load stability of more complex global average algorithms.
Resumo:
The absence of a definitive approach to the design of manufacturing systems signifies the importance of a control mechanism to ensure the timely application of relevant design techniques. To provide effective control, design development needs to be continually assessed in relation to the required system performance, which can only be achieved analytically through computer simulation. The technique providing the only method of accurately replicating the highly complex and dynamic interrelationships inherent within manufacturing facilities and realistically predicting system behaviour. Owing to the unique capabilities of computer simulation, its application should support and encourage a thorough investigation of all alternative designs. Allowing attention to focus specifically on critical design areas and enabling continuous assessment of system evolution. To achieve this system analysis needs to efficient, in terms of data requirements and both speed and accuracy of evaluation. To provide an effective control mechanism a hierarchical or multi-level modelling procedure has therefore been developed, specifying the appropriate degree of evaluation support necessary at each phase of design. An underlying assumption of the proposal being that evaluation is quick, easy and allows models to expand in line with design developments. However, current approaches to computer simulation are totally inappropriate to support the hierarchical evaluation. Implementation of computer simulation through traditional approaches is typically characterized by a requirement for very specialist expertise, a lengthy model development phase, and a correspondingly high expenditure. Resulting in very little and rather inappropriate use of the technique. Simulation, when used, is generally only applied to check or verify a final design proposal. Rarely is the full potential of computer simulation utilized to aid, support or complement the manufacturing system design procedure. To implement the proposed modelling procedure therefore the concept of a generic simulator was adopted, as such systems require no specialist expertise, instead facilitating quick and easy model creation, execution and modification, through simple data inputs. Previously generic simulators have tended to be too restricted, lacking the necessary flexibility to be generally applicable to manufacturing systems. Development of the ATOMS manufacturing simulator, however, has proven that such systems can be relevant to a wide range of applications, besides verifying the benefits of multi-level modelling.
Resumo:
This thesis describes an investigation by the author into the spares operation of compare BroomWade Ltd. Whilst the complete system, including the warehousing and distribution functions, was investigated, the thesis concentrates on the provisioning aspect of the spares supply problem. Analysis of the historical data showed the presence of significant fluctuations in all the measures of system performance. Two Industrial Dynamics simulation models were developed to study this phenomena. The models showed that any fluctuation in end customer demand would be amplified as it passed through the distributor and warehouse stock control systems. The evidence from the historical data available supported this view of the system's operation. The models were utilised to determine which parts of the total system could be expected to exert a critical influence on its performance. The lead time parameters of the supply sector were found to be critical and further study showed that the manner in which the lead time changed with work in progress levels was also an important factor. The problem therefore resolved into the design of a spares manufacturing system. Which exhibited the appropriate dynamic performance characteristics. The gross level of entity presentation, inherent in the Industrial Dynamics methodology, was found to limit the value of these models in the development of detail design proposals. Accordingly, an interacting job shop simulation package was developed to allow detailed evaluation of organisational factors on the performance characteristics of a manufacturing system. The package was used to develop a design for a pilot spares production unit. The need for a manufacturing system to perform successfully under conditions of fluctuating demand is not limited to the spares field. Thus, although the spares exercise provides an example of the approach, the concepts and techniques developed can be considered to have broad application throughout batch manufacturing industry.