965 resultados para transforming growth factor beta


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To compare the potential of bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7) and transforming growth factor beta1 (TGFbeta1) to effect the chondrogenic differentiation of synovial explants by analyzing the histologic, biochemical, and gene expression characteristics of the cartilaginous tissues formed. METHODS: Synovial explants derived from the metacarpal joints of calves were cultured in agarose. Initially, BMP-2 was used to evaluate the chondrogenic potential of the synovial explants under different culturing conditions. Under appropriate conditions, the chondrogenic effects of BMP-2, BMP-7, and TGFbeta1 were then compared. The differentiated tissue was characterized histologically, histomorphometrically, immunohistochemically, biochemically, and at the gene expression level. RESULTS: BMP-2 induced the chondrogenic differentiation of synovial explants in a dose- and time-dependent manner under serum- and dexamethasone-free conditions. The expression levels of cartilage-related genes increased in a time-dependent manner. BMP-7 was more potent than BMP-2 in inducing chondrogenesis, but the properties of the differentiated tissue were similar in each case. The type of cartilaginous tissue formed under the influence of TGFbeta1 differed in terms of both cell phenotype and gene expression profiles. CONCLUSION: The 3 tested members of the TGFbeta superfamily have different chondrogenic potentials and induce the formation of different types of cartilaginous tissue. To effect the full differentiation of synovial explants into a typically hyaline type of articular cartilage, further refinement of the stimulation conditions is required. This might be achieved by the simultaneous application of several growth factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor-b (TGF-b) is a cytokine that plays essential roles in regulating embryonic development and tissue homeostasis. In normal cells, TGF-b exerts an anti-proliferative effect. TGF-b inhibits cell growth by controlling a cytostatic program that includes activation of the cyclin-dependent kinase inhibitors p15Ink4B and p21WAF1/Cip1 and repression of c-myc. In contrast to normal cells, many tumors are resistant to the anti-proliferative effect of TGF-b. In several types of tumors, particularly those of gastrointestinal origin, resistance to the anti-proliferative effect of TGF-b has been attributed to TGF-b receptor or Smad mutations. However, these mutations are absent from many other types of tumors that are resistant to TGF-b-mediated growth inhibition. The transcription factor encoded by the homeobox patterning gene DLX4 is overexpressed in a wide range of malignancies. In this study, I demonstrated that DLX4 blocks the anti-proliferative effect of TGF-b by disabling key transcriptional control mechanisms of the TGF-b cytostatic program. Specifically, DLX4 blocked the ability of TGF-b to induce expression of p15Ink4B and p21WAF1/Cip1 by directly binding to Smad4 and to Sp1. Binding of DLX4 to Smad4 prevented Smad4 from forming transcriptional complexes with Smad2 and Smad3, whereas binding of DLX4 to Sp1 inhibited DNA-binding activity of Sp1. In addition, DLX4 induced expression of c-myc, a repressor of p15Ink4B and p21WAF1/Cip1 transcription, independently of TGF-b signaling. The ability of DLX4 to counteract key transcriptional control mechanisms of the TGF-b cytostatic program could explain in part the resistance of tumors to the anti-proliferative effect of TGF-b. This study provides a molecular explanation as to why tumors are resistant to the anti-proliferative effect of TGF-b in the absence of mutations in the TGF-b signaling pathway. Furthermore, this study also provides insights into how aberrant activation of a developmental patterning gene promotes tumor pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a fraction of patients surgically treated for cleft lip/palate, excessive scarring disturbs maxillary growth and dento-alveolar development. Since certain genes are involved in craniofacial morphogenesis as well as tissue repair, a primary defect causing cleft lip/palate could lead to altered wound healing. We performed in vitro wound healing assays with primary lip fibroblasts from 16 cleft lip/palate patients. Nine foreskin fibroblast strains were included for comparison. Cells were grown to confluency and scratch wounds were applied; wound closure was monitored morphometrically over time. Wound closure rate showed highly significant differences between fibroblast strains. Statistically, fibroblast strains from the 25 individuals could be divided into three migratory groups, namely "fast", "intermediate", and "slow". Most cleft lip/palate fibroblasts were distributed between the "fast" (5 strains) and the "intermediate" group (10 strains). These phenotypes were stable over different cell passages from the same individual. Expression of genes involved in cleft lip/palate and wound repair was determined by quantitative PCR. Transforming growth factor-α mRNA was significantly up-regulated in the "fast" group. 5 ng/ml transforming growth factor-α added to the culture medium increased the wound closure rate of cleft lip/palate strains from the "intermediate" migratory group to the level of the "fast", but had no effect on the latter group. Conversely, antibody to transforming growth factor-α or a specific inhibitor of its receptor most effectively reduced the wound closure rate of "fast" cleft lip/palate strains. Thus, fibroblasts from a distinct subgroup of cleft lip/palate patients exhibit an increased migration rate into wounds in vitro, which is linked to higher transforming growth factor-α expression and attenuated by interfering with its signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Vascular Ehlers-Danlos syndrome (VEDS) causes reduced life expectancy because of arterial dissections/rupture and hollow organ rupture. Although the causative gene, COL3A1, was identified >20 years ago, there has been limited progress in understanding the disease mechanisms or identifying treatments. METHODS AND RESULTS We studied inflammatory and transforming growth factor-β (TGF-β) signaling biomarkers in plasma and from dermal fibroblasts from patients with VEDS. Analyses were done in terms of clinical disease severity, genotype-phenotype correlations, and body composition and fat deposition alterations. VEDS subjects had increased circulating TGF-β1, TGF-β2, monocyte chemotactic protein-1, C-reactive protein, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and leptin and decreased interleukin-8 versus controls. VEDS dermal fibroblasts secreted more TGF-β2, whereas downstream canonical/noncanonical TGF-β signaling was not different. Patients with COL3A1 exon skipping mutations had higher plasma intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and VEDS probands had abnormally high plasma C-reactive protein versus affected patients identified through family members before any disease manifestations. Patients with VEDS had higher mean platelet volumes, suggesting increased platelet turnover because of ongoing vascular damage, as well as increased regional truncal adiposity. CONCLUSIONS These findings suggest that VEDS is a systemic disease with a major inflammatory component. C-reactive protein is linked to disease state and may be a disease activity marker. No changes in downstream TGF-β signaling and increased platelet turnover suggest that chronic vascular damage may partially explain increased plasma TGF-β1. Finally, we found a novel role for dysregulated TGF-β2, as well as adipocyte dysfunction, as demonstrated through reduced interleukin-8 and elevated leptin in VEDS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor β2 (TGF-β2) is well known to stimulate the expression of pro-fibrotic connective tissue growth factor (CTGF) in several cell types including human mesangial cells. The present study demonstrates that TGF-β2 enhances sphingosine 1-phosphate receptor 5 (S1P5) mRNA and protein expression in a time and concentration dependent manner. Pharmacological and siRNA approaches reveal that this upregulation is mediated via activation of classical TGF-β downstream effectors, Smad and mitogen-activated protein kinases. Most notably, inhibition of Gi with pertussis toxin and downregulation of S1P5 by siRNA block TGF-β2-stimulated upregulation of CTGF, demonstrating that Gi coupled S1P5 is necessary for TGF-β2-triggered expression of CTGF in human mesangial cells. Overall, these findings indicate that TGF-β2 dependent upregulation of S1P5 is required for the induction of pro-fibrotic CTGF by TGF-β. Targeting S1P5 might be an attractive novel approach to treat renal fibrotic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uninjured rat arteries transduced with an adenoviral vector expressing an active form of transforming growth factor β1 (TGF-β1) developed a cellular and matrix-rich neointima, with cartilaginous metaplasia of the vascular media. Explant cultures of transduced arteries showed that secretion of active TGF-β1 ceased by 4 weeks, the time of maximal intimal thickening. Between 4 and 8 weeks, the cartilaginous metaplasia resolved and the intimal lesions regressed almost completely, in large part because of massive apoptosis. Thus, locally expressed TGF-β1 promotes intimal growth and appears to cause transdifferentiation of vascular smooth muscle cells into chondrocytes. Moreover, TGF-β1 withdrawal is associated with regression of vascular lesions. These data suggest an unexpected plasticity of the adult vascular smooth muscle cell phenotype and provide an etiology for cartilaginous metaplasia of the arterial wall. Our observations may help to reconcile divergent views of the role of TGF-β1 in vascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) was found to inhibit differentiation of myogenic cells only when they were grown to high density. Inhibition also occurred when myogenic cells were cocultured with other types of mesenchymal cells but not when they were cocultured with epithelial cells. It is therefore possible that some density-dependent signaling mediates the intracellular response to TGF-β. Within 30 min of treatment, TGF-β induced translocation of MEF2, but not MyoD, myogenin, or p21, to the cytoplasm of myogenic cells grown to high density. Translocation was reversible on withdrawal of TGF-β. By using immune electron microscopy and Western blot analysis on subcellular fractions, MEF2 was shown to be tightly associated with cytoskeleton membrane components. To test whether MEF2 export from the nucleus was causally related to the inhibitory action of TGF-β, we transfected C2C12 myoblasts with MEF2C containing the nuclear localization signal of simian virus 40 large T antigen (nlsSV40). Myogenic cells expressing the chimerical MEF2C/nlsSV40, but not wild-type MEF2C, retained this transcription factor in the nucleus and were resistant to the inhibitory action of TGF-β. We propose a mechanism in which the inhibition of myogenesis by TGF-β is mediated through MEF2 localization to the cytoplasm, thus preventing it from participating in an active transcriptional complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A myelin basic protein (MBP)-specific BALB/c T helper 1 (Th1) clone was transduced with cDNA for murine latent transforming growth factor-β1 (TGF-β1) by coculture with fibroblasts producing a genetically engineered retrovirus. When SJL x BALB/c F1 mice, immunized 12–15 days earlier with proteolipid protein in complete Freund’s adjuvant, were injected with 3 × 106 cells from MBP-activated untransduced cloned Th1 cells, the severity of experimental allergic encephalomyelitis (EAE) was slightly increased. In contrast, MBP-activated (but not resting) latent TGF-β1-transduced T cells significantly delayed and ameliorated EAE development. This protective effect was negated by simultaneously injected anti-TGF-β1. The transduced cells secreted 2–4 ng/ml of latent TGF-β1 into their culture medium, whereas control cells secreted barely detectable amounts. mRNA profiles for tumor necrosis factor, lymphotoxin, and interferon-γ were similar before and after transduction; interleukin-4 and -10 were absent. TGF-β1-transduced and antigen-activated BALB/c Th1 clones, specific for hemocyanin or ovalbumin, did not ameliorate EAE. Spinal cords from mice, taken 12 days after receiving TGF-β1-transduced, antigen-activated cells, contained detectable amounts of TGF-β1 cDNA. We conclude that latent TGF-β1-transduced, self-reactive T cell clones may be useful in the therapy of autoimmune diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) regulates a variety of physiologic processes, including growth inhibition, differentiation, and induction of apoptosis. Some TGF-β-initiated signals are conveyed through Smad3; TGF-β binding to its receptors induces phosphorylation of Smad3, which then migrates to the nucleus where it functions as a transcription factor. We describe here the association of Smad3 with the nuclear protooncogene protein SnoN. Overexpression of SnoN represses transcriptional activation by Smad3. Activation of TGF-β signaling leads to rapid degradation of SnoN and, to a lesser extent, of the related Ski protein, and this degradation is likely mediated by cellular proteasomes. These results demonstrate the existence of a cascade of the TGF-β signaling pathway, which, upon TGF-β stimulation, leads to the destruction of protooncoproteins that antagonize the activation of the TGF-β signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) is a well characterized cytokine that appears to play a major role in directing the cellular response to injury, driving fibrogenesis, and, thus, potentially underlying the progression of chronic injury to fibrosis. In this study, we report the use of a novel TGF-β receptor antagonist to block fibrogenesis induced by ligation of the common bile duct in rats. The antagonist consisted of a chimeric IgG containing the extracellular portion of the TGF-β type II receptor. This “soluble receptor” was infused at the time of injury; in some experiments it was given at 4 days after injury, as a test of its ability to reverse fibrogenesis. The latter was assessed by expression of collagen, both as the mRNA in stellate cells isolated from control or injured liver and also by quantitative histochemistry of tissue sections. When the soluble receptor was administered at the time of injury, collagen I mRNA in stellate cells from the injured liver was 26% of that from animals receiving control IgG (P < 0.0002); when soluble receptor was given after injury induction, collagen I expression was 35% of that in control stellate cells (P < 0.0001). By quantitative histochemistry, hepatic fibrosis in treated animals was 55% of that in controls. We conclude that soluble TGF-β receptor is an effective inhibitor of experimental fibrogenesis in vivo and merits clinical evaluation as a novel agent for controlling hepatic fibrosis in chronic liver injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drosophila Mad proteins are intracellular signal transducers of decapentaplegic (dpp), the Drosophila transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) homolog. Studies in which the mammalian Smad homologs were transiently overexpressed in cultured cells have implicated Smad2 in TGF-β signaling, but the physiological relevance of the Smad3 protein in signaling by TGF-β receptors has not been established. Here we stably expressed Smad proteins at controlled levels in epithelial cells using a novel approach that combines highly efficient retroviral gene transfer and quantitative cell sorting. We show that upon TGF-β treatment Smad3 becomes rapidly phosphorylated at the SSVS motif at its very C terminus. Either attachment of an epitope tag to the C terminus or replacement of these three serine residues with alanine abolishes TGF-β-induced Smad3 phosphorylation; these proteins act in a dominant-negative fashion to block the antiproliferative effect of TGF-β in mink lung epithelial cells. A Smad3 protein in which the three C-terminal serines have been replaced by aspartic acids is also a dominant inhibitor of TGF-β signaling, but can activate plasminogen activator inhibitor 1 (PAI-1) transcription in a ligand-independent fashion when its nuclear localization is forced by transient overexpression. Phosphorylation of the three C-terminal serine residues of Smad3 by an activated TGF-β receptor complex is an essential step in signal transduction by TGF-β for both inhibition of cell proliferation and activation of the PAI-1 promoter.