932 resultados para topologia computazionale funzioni di taglia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nel presente lavoro, ho studiato e trovato le soluzioni esatte di un modello matematico applicato ai recettori cellulari della famiglia delle integrine. Nel modello le integrine sono considerate come un sistema a due livelli, attivo e non attivo. Quando le integrine si trovano nello stato inattivo possono diffondere nella membrana, mentre quando si trovano nello stato attivo risultano cristallizzate nella membrana, incapaci di diffondere. La variazione di concentrazione nella superficie cellulare di una sostanza chiamata attivatore dà luogo all’attivazione delle integrine. Inoltre, questi eterodimeri possono legare una molecola inibitrice con funzioni di controllo e regolazione, che chiameremo v, la quale, legandosi al recettore, fa aumentare la produzione della sostanza attizzatrice, che chiameremo u. In questo modo si innesca un meccanismo di retroazione positiva. L’inibitore v regola il meccanismo di produzione di u, ed assume, pertanto, il ruolo di modulatore. Infatti, grazie a questo sistema di fine regolazione il meccanismo di feedback positivo è in grado di autolimitarsi. Si costruisce poi un modello di equazioni differenziali partendo dalle semplici reazioni chimiche coinvolte. Una volta che il sistema di equazioni è impostato, si possono desumere le soluzioni per le concentrazioni dell’inibitore e dell’attivatore per un caso particolare dei parametri. Infine, si può eseguire un test per vedere cosa predice il modello in termini di integrine. Per farlo, ho utilizzato un’attivazione del tipo funzione gradino e l’ho inserita nel sistema, valutando la dinamica dei recettori. Si ottiene in questo modo un risultato in accordo con le previsioni: le integrine legate si trovano soprattutto ai limiti della zona attivata, mentre le integrine libere vengono a mancare nella zona attivata.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In questa Tesi forniamo una libreria di funzioni aritmetiche che operano in spazio logaritmico rispetto all'input. Partiamo con un'analisi dei campi in cui è necessario o conveniente porre dei limiti, in termini di spazio utilizzato, alla computazione di un determinato software. Vista la larga diffusione del Web, si ha a che fare con collezioni di dati enormi e che magari risiedono su server remoti: c'è quindi la necessità di scrivere programmi che operino su questi dati, pur non potendo questi dati entrare tutti insieme nella memoria di lavoro del programma stesso. In seguito studiamo le nozioni teoriche di Complessità, in particolare quelle legate allo spazio di calcolo, utilizzando un modello alternativo di Macchina di Turing: la Offline Turing Machine. Presentiamo quindi un nuovo “modello” di programmazione: la computazione bidirezionale, che riteniamo essere un buon modo di strutturare la computazione limitata in spazio. Forniamo poi una “guida al programmatore” per un linguaggio di recente introduzione, IntML, che permettere la realizzazione di programmi logspace mantenendo però il tradizionale stile di programmazione funzionale. Infine, per mostrare come IntML permetta concretamente di scrivere programmi limitati in spazio, realizziamo una libreria di funzioni aritmetiche che operano in spazio logaritmico. In particolare, mostriamo funzioni per calcolare divisione intera e resto sui naturali, e funzioni per confrontare, sommare e moltiplicare numeri espressi come parole binarie.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In questo elaborato vengono studiati gli arrangiamenti di iperpiani prima di tutto dal punto di vista combinatorio e, in seguito, dal punto di vista topologico. Particolare attenzione verrà riposta nello studio della coomologia del complemento di arrangiamenti complessi. Per giungere ad una completa descrizione coomologica si sfrutterà la costruzione e lo studio di particolari algebre esterne basate sulle caratteristiche combinatorie degli arrangiamenti.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In questa tesi si esaminano alcune questioni riguardanti le curve definite su campi finiti. Nella prima parte si affronta il problema della determinazione del numero di punti per curve regolari. Nella seconda parte si studia il numero di classi di ideali dell’anello delle coordinate di curve piane definite da polinomi assolutamente irriducibili, per ottenere, nel caso delle curve ellittiche, risultati analoghi alla classica formula di Dirichlet per il numero di classi dei campi quadratici e delle congetture di Gauss.

Relevância:

40.00% 40.00%

Publicador: