914 resultados para time series, alignment, recognition of the time series
Resumo:
The feasibility of detecting instability in wet spouted beds via pressure fluctuation (PF) time-series analyses was investigated. Experiments were carried out in a cylindrical Plexiglas column of diameter 150 mm with a conical base of internal angle 60 degrees, an inlet orifice diameter of 25 mm and glass beads of diameter 2.4 mm. Transducers at several axial positions measured PF time series with incremental addition of aqueous sucrose solutions of different concentrations. Liquid addition affected the spouted bed dynamics, causing irregular spouting, increased voidage in the annulus, increased fountain height, irregular annulus height, channelling, agglomeration, and adhesion of particles to the column walls. Autocorrelations indicated the appearance of periodicities in the PF signals with increasing sucrose addition. Dominant peaks in power-spectral density developed at low frequencies with changing system dynamics. The results indicate that PF signals furnish relevant information on system dynamics, useful for monitoring and control of spouted bed operations such as particle coating and drying of paste-like materials.
Resumo:
PURPOSE: Recently, a 76-gene prognostic signature able to predict distant metastases in lymph node-negative (N(-)) breast cancer patients was reported. The aims of this study conducted by TRANSBIG were to independently validate these results and to compare the outcome with clinical risk assessment. EXPERIMENTAL DESIGN: Gene expression profiling of frozen samples from 198 N(-) systemically untreated patients was done at the Bordet Institute, blinded to clinical data and independent of Veridex. Genomic risk was defined by Veridex, blinded to clinical data. Survival analyses, done by an independent statistician, were done with the genomic risk and adjusted for the clinical risk, defined by Adjuvant! Online. RESULTS: The actual 5- and 10-year time to distant metastasis were 98% (88-100%) and 94% (83-98%), respectively, for the good profile group and 76% (68-82%) and 73% (65-79%), respectively, for the poor profile group. The actual 5- and 10-year overall survival were 98% (88-100%) and 87% (73-94%), respectively, for the good profile group and 84% (77-89%) and 72% (63-78%), respectively, for the poor profile group. We observed a strong time dependence of this signature, leading to an adjusted hazard ratio of 13.58 (1.85-99.63) and 8.20 (1.10-60.90) at 5 years and 5.11 (1.57-16.67) and 2.55 (1.07-6.10) at 10 years for time to distant metastasis and overall survival, respectively. CONCLUSION: This independent validation confirmed the performance of the 76-gene signature and adds to the growing evidence that gene expression signatures are of clinical relevance, especially for identifying patients at high risk of early distant metastases.
Resumo:
The objective of this paper is to introduce a diVerent approach, called the ecological-longitudinal, to carrying out pooled analysis in time series ecological studies. Because it gives a larger number of data points and, hence, increases the statistical power of the analysis, this approach, unlike conventional ones, allows the complementation of aspects such as accommodation of random effect models, of lags, of interaction between pollutants and between pollutants and meteorological variables, that are hardly implemented in conventional approaches. Design—The approach is illustrated by providing quantitative estimates of the short-termeVects of air pollution on mortality in three Spanish cities, Barcelona,Valencia and Vigo, for the period 1992–1994. Because the dependent variable was a count, a Poisson generalised linear model was first specified. Several modelling issues are worth mentioning. Firstly, because the relations between mortality and explanatory variables were nonlinear, cubic splines were used for covariate control, leading to a generalised additive model, GAM. Secondly, the effects of the predictors on the response were allowed to occur with some lag. Thirdly, the residual autocorrelation, because of imperfect control, was controlled for by means of an autoregressive Poisson GAM. Finally, the longitudinal design demanded the consideration of the existence of individual heterogeneity, requiring the consideration of mixed models. Main results—The estimates of the relative risks obtained from the individual analyses varied across cities, particularly those associated with sulphur dioxide. The highest relative risks corresponded to black smoke in Valencia. These estimates were higher than those obtained from the ecological-longitudinal analysis. Relative risks estimated from this latter analysis were practically identical across cities, 1.00638 (95% confidence intervals 1.0002, 1.0011) for a black smoke increase of 10 μg/m3 and 1.00415 (95% CI 1.0001, 1.0007) for a increase of 10 μg/m3 of sulphur dioxide. Because the statistical power is higher than in the individual analysis more interactions were statistically significant,especially those among air pollutants and meteorological variables. Conclusions—Air pollutant levels were related to mortality in the three cities of the study, Barcelona, Valencia and Vigo. These results were consistent with similar studies in other cities, with other multicentric studies and coherent with both, previous individual, for each city, and multicentric studies for all three cities
Resumo:
We present the symbolic resonance analysis (SRA) as a viable method for addressing the problem of enhancing a weakly dominant mode in a mixture of impulse responses obtained from a nonlinear dynamical system. We demonstrate this using results from a numerical simulation with Duffing oscillators in different domains of their parameter space, and by analyzing event-related brain potentials (ERPs) from a language processing experiment in German as a representative application. In this paradigm, the averaged ERPs exhibit an N400 followed by a sentence final negativity. Contemporary sentence processing models predict a late positivity (P600) as well. We show that the SRA is able to unveil the P600 evoked by the critical stimuli as a weakly dominant mode from the covering sentence final negativity. (c) 2007 American Institute of Physics. (c) 2007 American Institute of Physics.
Resumo:
Flickering is a phenomenon related to mass accretion observed among many classes of astrophysical objects. In this paper we present a study of flickering emission lines and the continuum of the cataclysmic variable V3885 Sgr. The flickering behavior was first analyzed through statistical analysis and the power spectra of lightcurves. Autocorrelation techniques were then employed to estimate the flickering timescale of flares. A cross-correlation study between the line and its underlying continuum variability is presented. The cross-correlation between the photometric and spectroscopic data is also discussed. Periodograms, calculated using emission-line data, show a behavior that is similar to those obtained from photometric datasets found in the literature, with a plateau at lower frequencies and a power-law at higher frequencies. The power-law index is consistent with stochastic events. The cross-correlation study indicates the presence of a correlation between the variability on Ha and its underlying continuum. Flickering timescales derived from the photometric data were estimated to be 25 min for two lightcurves and 10 min for one of them. The average timescales of the line flickering is 40 min, while for its underlying continuum it drops to 20 min.
Resumo:
The linearity assumption in the structural dynamics analysis is a severe practical limitation. Further, in the investigation of mechanisms presented in fighter aircrafts, as for instance aeroelastic nonlinearity, friction or gaps in wing-load-payload mounting interfaces, is mandatory to use a nonlinear analysis technique. Among different approaches that can be used to this matter, the Volterra theory is an interesting strategy, since it is a generalization of the linear convolution. It represents the response of a nonlinear system as a sum of linear and nonlinear components. Thus, this paper aims to use the discrete-time version of Volterra series expanded with Kautz filters to characterize the nonlinear dynamics of a F-16 aircraft. To illustrate the approach, it is identified and characterized a non-parametric model using the data obtained during a ground vibration test performed in a F-16 wing-to-payload mounting interfaces. Several amplitude inputs applied in two shakers are used to show softening nonlinearities presented in the acceleration data. The results obtained in the analysis have shown the capability of the Volterra series to give some insight about the nonlinear dynamics of the F-16 mounting interfaces. The biggest advantage of this approach is to separate the linear and nonlinear contributions through the multiple convolutions through the Volterra kernels.
Resumo:
An important problem in unsupervised data clustering is how to determine the number of clusters. Here we investigate how this can be achieved in an automated way by using interrelation matrices of multivariate time series. Two nonparametric and purely data driven algorithms are expounded and compared. The first exploits the eigenvalue spectra of surrogate data, while the second employs the eigenvector components of the interrelation matrix. Compared to the first algorithm, the second approach is computationally faster and not limited to linear interrelation measures.
Resumo:
We examine the time-series relationship between housing prices in eight Southern California metropolitan statistical areas (MSAs). First, we perform cointegration tests of the housing price indexes for the MSAs, finding seven cointegrating vectors. Thus, the evidence suggests that one common trend links the housing prices in these eight MSAs, a purchasing power parity finding for the housing prices in Southern California. Second, we perform temporal Granger causality tests revealing intertwined temporal relationships. The Santa Anna MSA leads the pack in temporally causing housing prices in six of the other seven MSAs, excluding only the San Luis Obispo MSA. The Oxnard MSA experienced the largest number of temporal effects from other MSAs, six of the seven, excluding only Los Angeles. The Santa Barbara MSA proved the most isolated in that it temporally caused housing prices in only two other MSAs (Los Angels and Oxnard) and housing prices in the Santa Anna MSA temporally caused prices in Santa Barbara. Third, we calculate out-of-sample forecasts in each MSA, using various vector autoregressive (VAR) and vector error-correction (VEC) models, as well as Bayesian, spatial, and causality versions of these models with various priors. Different specifications provide superior forecasts in the different MSAs. Finally, we consider the ability of theses time-series models to provide accurate out-of-sample predictions of turning points in housing prices that occurred in 2006:Q4. Recursive forecasts, where the sample is updated each quarter, provide reasonably good forecasts of turning points.